CS/ECE 6780/5780

Al Davis

Today’s topics:

*FIFO’s 6812 style

*hopefully a review?

!DJ School of Computing

University of Utah 1 CS 5780

FIFO’s

¢ Useful interface
= provide slack to decouple producer and consumer rates

= provides order preserving buffering
» for the case where all produced values are important
* alternative - single memory location
- for the case when only the most recent value Is needed
= circular queue is a useful buffered 1/0 interface

» statically allocated global memory
* aids in controlling memory footprint when resources are limited
- e.g. as In your lab kits
¢ can be shared by main and ISR’s
- access must be carefully controlled to get It right however

Producer Consumer

!”J School of Computing

University of Utah 2 CS 5780

Page 1

Producer Consumer Examples

Source/producer

Sink /consumer

Keyboard input

Program with data

Program sends message
Microphone and ADC
Program that has sound data

Program that interprets
Printer output

Program receives message
Program that saves sound data
DAC and speaker

School of Computing
!yj University of Utah

3 CS 5780

FIFO w/ Infinite Memory

GetPt —
PutPt ——
Valid data
Infinite memory
!”J School of Computing s cS 5780

University of Utah

Page 2

Basic Code Model

¢ Not robust however

char static volatile *PutPt; // put next
char static volatile *GetPt; // get next
// call by value

int Fifo_Put(char data){

*PutPt = data; // Put
PutPt++; // next
return(1); // true if success

}

// call by reference

int Fifo_Get(char *datapt){
*datapt = *GetPt; // return by reference
GetPt++; // next
return(1); // true if success

}

What’s missing?

!DJ School of Computing 5 CS 5780

University of Utah

2-pointer Finite FIFO Initialization

#define FIFOSIZE 10 /* can hold 9 */
char static volatile *PutPt; /* Pointer to put next */
char static volatile *GetPt; /* Pointer to get next */

/* FIFO is empty if PutPt == GetPt */

/* FIFO is full if PutPt+1 == GetPt (with wrap) */

char static Fifo[FIFOSIZE];

void Fifo_Init (void)

{
unsigned char SaveSP = begin_critical();
PutPt=GetPt=&Fifo[0]; /* Empty when PutPt=GetPt */
end_critical (SaveSP);
}
School of Computing
W) University of Utah 6 CS 5780

Page 3

Atomicity Functions

unsigned char begin_critical (void)
{

unsigned char SaveSP;

asm tpa

asm staa SaveSP

asm seil

return SaveSP;

void end_critical (unsigned char SaveSP)
{
asm ldaa SaveSP

asm tap
} What is another way to do this?

School of Computing
!yj University of Utah 7 CS 5780

Put for a 2-pointer Circular FIFO

int Fifo_Put(char data)
{
char *Ppt; /* Temp put pointer */
unsigned char SaveSP = begin_critical();
Ppt=PutPt; /* Copy of put pointer */
(Ppt++)=data; / Try to put data into fifo */
if (Ppt == &Fifo[FIFOSIZE]) Ppt = &Fifo[0]; /* Wrap */
if (Ppt == GetPt) {
end_critical (SaveSP);
return(0); /* Failed: fifo was full */
} else {
PutPt=Ppt;
end_critical (SaveSP);
return(1); /* Successful */

Is this correct?

School of Computing
!”J University of Utah 8 CS 5780

Page 4

Put Example

Initially
int Fifo Put(char data) {
char *Ppt;
unsigned char SaveSP = begin critical();
data = 0x04 ppt=§tpt; &
0xXX *(Ppt++)=data;
if (Ppt == &Fifo[FIFOSIZE])
GetPt — | 0x01 Ppt = &Fifo[0];
0x02 if (Ppt == GetPt) {
end_critical (SaveSP);
0x03 return(0);
PutPt — | OxXX } ell)sep{ op
utPt=Ppt;
0xXX end critical (SaveSP);
return(1);
}
}
School of Computin
W) puting 9 CS 5780

University of Utah

Put Example

int Fifo_Put(char data) {

char *Ppt;
unsigned char SaveSP = begin critical();
data = 0x04 Ppt=§§tpt; ¢
0xXX *(Ppt++)=data;
if (Ppt == &Fifo[FIFOSIZE])
GetPt — | 0x01 Ppt = &Fifo[0];
0x02 if (Ppt == GetPt) {
end_critical (SaveSP);
0x03 return(0);
PutPt/Ppt — | OxXX }else {
PutPt=Ppt;
0xXX end critical (SaveSP);
return(i);
}
}
School of Computin
W) g 10 CS 5780

University of Utah

Page 5

Put Example

int Fifo_Put(char data) {

char *Ppt;
unsigned char SaveSP = begin critical();
data = 0x04 Ppt=PutPt;
0xXX *(Ppt++)=data;
if (Ppt == &Fifo[FIFOSIZE])
GetPt — | Ox01 Ppt = &Fifol0];
0x02 if (Ppt == GetPt) {
end_critical (SaveSP);
0x03 return(0);
PutPt — | 0x04 } eésep{ op
utPt=Ppt;
Ppt — | OxXX end critical (SaveSP);
return(i);
}
}
School of Computing
!yj University of Utah " €3 5780

Get for a 2-pointer Circular FIFO

int Fifo_Get(char *datapt) {
if (PutPt == GetPt) {
return(0); /* Empty if PutPt=GetPt */
} else {
unsigned char SaveSP = begin_critical();
xdatapt=* (GetPt++) ;
if (GetPt == &Fifo[FIFOSIZE])
GetPt = &Fifo[0]; /* Wrap */
end_critical (SaveSP);
return(1);

School of Computing
!DJ University of Utah 12 CS 5780

Page 6

2-pointer vs. Counter FIFO’s

¢ 2 pointer version
= implicit number of elements
» how do you calculate how many values are in the queue?
¢ Alternative is explicit store of current size
= 2-pointer counter FIFO
» requires an extra variable - e.g. Size
» but has compensating advantages

School of Computing
!yj University of Utah 13 CS 5780

Initialization of a 2-pointer Counter FIFO

#define FIFOSIZE 10 /#* can hold 10 */
char static volatile *PutPt; /* Pointer to put next */
char static volatile *GetPt; /* Pointer to get next */
char Fifo[FIFOSIZE];
unsigned char Size; /* Number of elements */
void Fifo_Init(void) {
unsigned char SaveSP = begin_critical();
PutPt=GetPt=&Fifo[0]; /* Empty when Size==0 */
Size=0;
end_critical (SaveSP);

}

School of Computing
!”J University of Utah 14 CS 5780

Page 7

Put Function

int Fifo_Put(char data) {
if (Size == FIFOSIZE) {

return(0) ; /* Failed, fifo was full */
} else {

unsigned char SaveSP = begin_critical();

Size++;

* (PutPt++)=data; /* put data into fifo */
if (PutPt == &Fifo[FIFOSIZE]) {
PutPt = &Fifo[0]; /* Wrap */

}
end_critical (SaveSP);
return(1); /* Successful */

!DJ School of Computing

University of Utah 15 CS 5780

Get Function

int Fifo_Get (char *datapt) {
if (Size == 0) {
return(0); /* Empty if Size=0 */
} else {
unsigned char SaveSP = begin_critical();
xdatapt=*(GetPt++) ;
Size—-—;
if (GetPt == &Fifo[FIFOSIZE]) {
GetPt = &Fifo[0]; /* Wrap */
}
end_critical (SaveSP);
return(1);

} What advantages come from the size variable?

!DJ School of Computing 16 CS 5780

University of Utah

Page 8

Yet Another FIFO Option

¢ First two options
= used pointers
¢ Index FIFO
= accesses elements via array indices

!DJ School of Computing

University of Utah 7

CS 5780

Index FIFO Initialization

Same basic idea but w/o pointer weirdness

#define FIFOSIZE 10 /* Number of 8 bit data in the Fifo */
unsigned char PutI; /* Index of where to put next */
unsigned char GetI; /* Index of where to get next */
unsigned char Size; /* Number of elements in the FIFO */

/* FIFO is empty if Size=0 */

/* FIFO is full if Size=FIFOSIZE */
char Fifo[FIFOSIZE]; /* The statically allocated fifo data

void Fifo_Init(void)

{
unsigned char SaveSP = begin_critical();
PutI=GetI=Size=0; /* Empty when Size==0 */
end_critical (SaveSP);

}

!DJ School of Computing

University of Utah 18

CS 5780

Page 9

Index FIFO Put

int Fifo_Put (char data)

{
if (Size == FIFOSIZE) {
return(0) ; /* Failed, fifo was full */
} else {
unsigned char SaveSP = begin_critical();
Size++;
Fifo[PutI++]=data; /* put data into fifo */
if (Putl == FIFOSIZE)
Putl = 0; /* Wrap */
end_critical (SaveSP);
return(1); /* Successful */
}
}

School of Computing
!yj University of Utah 19 CS 5780

Index FIFO Get

int Fifo_Get (char *datapt)
{
if (Size == 0) {
return(0); /* Empty if Size=0 */
} else {
unsigned char SaveSP = begin_critical();
*datapt=Fifo [GetI++];

Size--;
if (GetI == FIFOSIZE)
Getl = 0;
end_critical (SaveSP);
return(1);
}

School of Computing
!DJ University of Utah 20 CS 5780

Page 10

FIFO Dynamics

Rates of production/consumption vary dynamically.
tp is time between Put calls, r, is arrival rate (r, = %)

ty is time between Get calls, r, is service rate (r, = L).
g
If min t, > max t,, FIFO is not necessary.

If arrival rate can temporarily increase or service rate
temporarily decrease, then a FIFO is necessary.

If average production rate exceeds average consumption rate
(i.e., 7p > T,), then FIFO will overflow.

A full error is serious because ignored data is lost.
An empty error may or may not be serious.

School of Computing
!'JJ University of Utah 21 CS 5780

SCI Data Flow Graph w/ Two FIFOs

/'.0 Producer
(\RxFifo_Put

Consumcs RxFifo_Get 5
f, RDRF
Bk ISR input
Producer : 3 Consumer
TxFifo_Put TxFifo_Get
. TDRE SCl
@ b ISR output
School of Computing
!”J University of Utah 22 CS 5780

Page 11

Concluding Remarks

Basic FIFO service
* decouple rate of production from rate of consumption
* ideal size depends on maximum slack between the rates
e Cost
= some RAM utilization and a few CPU cycles
= note crtical section occupancy

» if it’s longer the t, or t. then there is a problem
* solution?

* Real systems have FIFO’s everywhere
* main reason why this lecture had such a narrow focus
* what’s the fundamental reason for this?
* FIFO’s are concurrent data structures
* touched by main + ISRs or threads
¢ Writing correct concurrent data structures can be hard
= jf done right then using them is easy

!DJ School of Computing 23 CS 5780

University of Utah

Page 12

