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Al Davis 

 Today’s topics: 

• lab logistics 

• interrupt synchronization 

• reentrant code 
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Lab Logistics 

•  Lab2 Status 
  Wed: 3/11 teams have completed their labs 

»  likely due to late handout of Lab 2 
•  we were 3 days late in getting it to you 

•  only fair to give you 3 days extension 
–  make appointment w/ William to demonstrate 

–  lab reports still due at next weeks lab session 

•  BUT other labs will stay on schedule 

  Pre-labs must be done before your lab session 
»  most of the Wed. non-finishers didn’t do this 

»  bottom line 
•  you won’t get pre-lab and actual lab done in time if you don’t do the

 pre-lab prior to your lab session 

  Don’t just blow off any lab 
»  labs are additive 

•  e.g. previous lab code will be useful for subsequent labs 

•  Schedule through first midterm is on the web 
  useful to do the reading before the lecture 
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Interrupts 

•  External wake-up stimulus 
  alternative to the software polling loop 

•  Efficient response to rare events 
  importance will vary 

»  low-power warning  emergency 

»  key got pushed  handle soon but not now 

  energy efficient  
»  processor doesn’t consume energy in a polling loop 

»  or it can be doing something else that is useful 

•  Highly useful for data acquisition and control 

•  Predictable response time? 
  depends on how you configure the system 

  predictability is a MUST in real-time systems 

•  Interrupts add concurrency to your ES software 
  this can make you life very difficult 
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What are Interrupts 

•  Automatic hardware supported transfer of control 
  external hardware runs asynchronously & concurrently 

»  w.r.t. controller SW 

  interrupts transfer control out of whatever is currently
 running 

»  to an interrupt service routine (ISR) 
•  looks like a surprise call to the ISR that you write 

•  ISR is a background thread 

»  ISR return is done via the rti instruction 

»  interrupts communicate with main using shared memory 
•  concurrency usually requires some form of mutual exclusion control 

–  such as semaphores 

•  Software interrupts 
  these are synchronous 

»  SWI instruction (one use would be a breakpoint) 

»  automatically happens on 6812 via an unimplemented opcode 
•  e.g. ISR may implement the opcode or send command to off chip

 implementation 
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ARM vs. Disable 

•  ARM 
  each off-controller “interrupter” 

»  should have a register that has an ARM bit 

»  allows the controller to specify who may interrupt 

•  Disable 
  the I bit in the CC register 

»  I=0  all armed interrupts are enabled 

»  I=1  disable interrupts 
•  note this does not ignore interrupts 

•  it just postpones them 

  typical disable usage 
»  first action in ISR – set I=1 

»  do whatever needs to be done that can’t be interrupted 

»  set I=0 

»  NOTE: not doing this is a common source of significant
 confusion 
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Dedicated vs. Shared 

Multiple open-collector 
requests tied together  
to a shared interrupt  
line on the controller 
Pull up holds IRQ’ high  
when no service is 
requested 

Separate interrupt  
inputs on the controller 
Each Iin is dedicated 
to a particular request 
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6812 Interrupt Inputs 

•  IRQ’ 
  can be disabled or enabled via the I bit in the CCR 

  typical use is for non-emergency interrupts 
»  e.g. service can be handled and then resume normal control 

•  XIRQ’ 
  once enabled by setting the X bit in the CCR to 0 

»  they can’t be disabled 

  typical use is emergency 
»  low-power 

•  ISR saves as much as it can before power is gone 
–  return to normal control in this case won’t happen 

•  How does the controller know what to do in the shared
 IRQ case? 

•  What are the fundamental advantages of shared vs.
 dedicated interrupts? 
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Dedicated vs. Shared 

•  Shared 
  +’s use of wired-or style interrupts (open collector on 6812) 

»  no limit on number of interrupt capable devices 

»  simple hardware and wiring 

»  expansion to include more I/O devices requires no redesign 

  cons: 
»  ISR must look at all possible device registers to see what

 service is required 
•  there may be more than one 

»  dispatch to appropriate routine 

»  reset the request bit 

•  Dedicated 
  +’s: simpler software due to dedicated ISR’s 

»  faster since SW doesn’t need to check everybody 

»  less software coupling 

»  easier to implement priority 

  con: you might run out of dedicated Iin’s 
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ISR’s 

•  ISR: software that handles interrupt requests 

•  2 polar styles 
  Polled – one large ISR handles all requests 

»  shared model 

  Vectored  
»  dedicated model 

•  each Iin causes indirect jump via a specific memory location 

•  often indexed via a separate interrupt index register 

•  If armed and enabled and a request happens 
  execution of main program is suspended 

  all registers pushed to stack 

  ISR executed and returns (rti) 

  all registers restored from stack 

  main program is resumed 

  see any problems? 
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Interrupt Execution 
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When to Use Interrupts 

12 CS 5780 
School of Computing 
University of Utah 

Communication w/ Interrupts 

•  Any 2 threads must communicate via global memory 
  foreground and background threads in the interrupt case 

»  but still they are 2 threads 

  in some cases main and ISR won’t communicate 
»  this is common in mainstream CPU’s 

»  e.g. ISR’s fix exceptional events that have nothing to do with
 main 

  ES’s tend to be different 
»  tight coupling between I/O environment 

»  controllers role is often to aggregate I/O interrupt events into
 it’s main calculation 

•  Interrupts have logically separate registers/stack  
  so communication must occur through global memory 

»  note that logically doesn’t mean physically  
•  registers saved and restored via the same physical stack 

»  communication can’t use the stack since it’s not a normal
 subroutine call due to the surprise factor 
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2 Thread Communication Example 

Global FIFO is a common choice - why? 
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Input Device Interrupts 



Page 8 

15 CS 5780 
School of Computing 
University of Utah 

Output Device Interrupts 
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Other Interrupt Issues 

•  Periodic interrupts 
  essential for implementing data acquisition and control

 systems 

•  ISR goals 
  occur only when needed 

  come in clean, perform function, return right away 
»  clearly Gadfly loops should be avoided 

  minimize time spent in ISR’s 

•  Latency 
  interface latency 

»  time between new data interrupt and when ISR or main gets
 the data 

•  beware the difference 

»  device latency – response time of external I/O device 

  real-time? 
»  requires tight bounds on latency guarantees 
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Reentrant Programming 

•  Program reentrant if 
  can be XEQ’s by >1 threads of control 

•  Program must 
  place local variables on the stack or use some form of

 mutual exclusion to prevent conflict on global storage
 accesses 

•  Non-reentrant subroutine 
  has a vulnerable window 

  error occurs if 
»  main or an ISR calls while running in the vulnerable window 

  fix: 
»  make sure only one active call can be in the vulnerable

 window 

»  mutex mechanisms 
•  semaphore variable 

•  disable interrupts 
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Reentrant or Not? 

•  Must be able to recognize potential sources of bugs 
  due to non-reentrant code in high-level languages 

»  just for yucks we’ll define C to be high level 

•  Another example of why you’ll sometimes need to
 examine assembly code 
  Is time++ atomic? 

»  Yes if compiler generates 
•  inc time

»  No if compiler generates 
•  ldd time
•  add #1
•  std time

What is the essential difference? 
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Atomic Operations 

•  Atomic operation  
  an operation that once started is guaranteed to finish 

•  In most machines 
  a single assembly instruction is atomic 

»  if an interrupt happens it will be taken between instructions 

»  not during 

•  Hence 
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Read-Modify-Write Example 

•  Typical case where atomicity is desired 
  but not guaranteed === bug time BIG TIME 
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Write followed by Read Example 

•  RAW hazard 
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Nonatomic Multistep Write 
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Disabling Interrupts in C 
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A Binary Semaphore 
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Interrupt Synchronization Summary 

•  Device synchronization requires some protocol 
  to permit HW and SW FSM’s to interact 

  HW protocols found in the device specifications 
»  often cast in concrete 

»  SW protocol must be compatible 

•  Interrupts are essentially a state machine 
  interaction between main and the ISR follows a protocol 

»  supported by hardware 

  However 
»  since you’re writing both main and the ISR 

•  you’ll be tempted to not think it through carefully 

»  this is why interrupts are hard 
•  most of us make this mistake on the initial try or two 

•  fortunately mistake enhanced learning works quite well 


