
Page 1

1 CS 5780
School of Computing
University of Utah

Introduction to Embedded Systems

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• lab logistics

• interrupt synchronization

• reentrant code

2 CS 5780
School of Computing
University of Utah

Lab Logistics

•  Lab2 Status
  Wed: 3/11 teams have completed their labs

»  likely due to late handout of Lab 2
•  we were 3 days late in getting it to you

•  only fair to give you 3 days extension
–  make appointment w/ William to demonstrate

–  lab reports still due at next weeks lab session

•  BUT other labs will stay on schedule

  Pre-labs must be done before your lab session
»  most of the Wed. non-finishers didn’t do this

»  bottom line
•  you won’t get pre-lab and actual lab done in time if you don’t do the

 pre-lab prior to your lab session

  Don’t just blow off any lab
»  labs are additive

•  e.g. previous lab code will be useful for subsequent labs

•  Schedule through first midterm is on the web
  useful to do the reading before the lecture

Page 2

3 CS 5780
School of Computing
University of Utah

Interrupts

•  External wake-up stimulus
  alternative to the software polling loop

•  Efficient response to rare events
  importance will vary

»  low-power warning emergency

»  key got pushed handle soon but not now

  energy efficient
»  processor doesn’t consume energy in a polling loop

»  or it can be doing something else that is useful

•  Highly useful for data acquisition and control

•  Predictable response time?
  depends on how you configure the system

  predictability is a MUST in real-time systems

•  Interrupts add concurrency to your ES software
  this can make you life very difficult

4 CS 5780
School of Computing
University of Utah

What are Interrupts

•  Automatic hardware supported transfer of control
  external hardware runs asynchronously & concurrently

»  w.r.t. controller SW

  interrupts transfer control out of whatever is currently
 running

»  to an interrupt service routine (ISR)
•  looks like a surprise call to the ISR that you write

•  ISR is a background thread

»  ISR return is done via the rti instruction

»  interrupts communicate with main using shared memory
•  concurrency usually requires some form of mutual exclusion control

–  such as semaphores

•  Software interrupts
  these are synchronous

»  SWI instruction (one use would be a breakpoint)

»  automatically happens on 6812 via an unimplemented opcode
•  e.g. ISR may implement the opcode or send command to off chip

 implementation

Page 3

5 CS 5780
School of Computing
University of Utah

ARM vs. Disable

•  ARM
  each off-controller “interrupter”

»  should have a register that has an ARM bit

»  allows the controller to specify who may interrupt

•  Disable
  the I bit in the CC register

»  I=0 all armed interrupts are enabled

»  I=1 disable interrupts
•  note this does not ignore interrupts

•  it just postpones them

  typical disable usage
»  first action in ISR – set I=1

»  do whatever needs to be done that can’t be interrupted

»  set I=0

»  NOTE: not doing this is a common source of significant
 confusion

6 CS 5780
School of Computing
University of Utah

Dedicated vs. Shared

Multiple open-collector
requests tied together
to a shared interrupt
line on the controller
Pull up holds IRQ’ high
when no service is
requested

Separate interrupt
inputs on the controller
Each Iin is dedicated
to a particular request

Page 4

7 CS 5780
School of Computing
University of Utah

6812 Interrupt Inputs

•  IRQ’
  can be disabled or enabled via the I bit in the CCR

  typical use is for non-emergency interrupts
»  e.g. service can be handled and then resume normal control

•  XIRQ’
  once enabled by setting the X bit in the CCR to 0

»  they can’t be disabled

  typical use is emergency
»  low-power

•  ISR saves as much as it can before power is gone
–  return to normal control in this case won’t happen

•  How does the controller know what to do in the shared
 IRQ case?

•  What are the fundamental advantages of shared vs.
 dedicated interrupts?

8 CS 5780
School of Computing
University of Utah

Dedicated vs. Shared

•  Shared
  +’s use of wired-or style interrupts (open collector on 6812)

»  no limit on number of interrupt capable devices

»  simple hardware and wiring

»  expansion to include more I/O devices requires no redesign

  cons:
»  ISR must look at all possible device registers to see what

 service is required
•  there may be more than one

»  dispatch to appropriate routine

»  reset the request bit

•  Dedicated
  +’s: simpler software due to dedicated ISR’s

»  faster since SW doesn’t need to check everybody

»  less software coupling

»  easier to implement priority

  con: you might run out of dedicated Iin’s

Page 5

9 CS 5780
School of Computing
University of Utah

ISR’s

•  ISR: software that handles interrupt requests

•  2 polar styles
  Polled – one large ISR handles all requests

»  shared model

  Vectored
»  dedicated model

•  each Iin causes indirect jump via a specific memory location

•  often indexed via a separate interrupt index register

•  If armed and enabled and a request happens
  execution of main program is suspended

  all registers pushed to stack

  ISR executed and returns (rti)

  all registers restored from stack

  main program is resumed

  see any problems?

10 CS 5780
School of Computing
University of Utah

Interrupt Execution

Page 6

11 CS 5780
School of Computing
University of Utah

When to Use Interrupts

12 CS 5780
School of Computing
University of Utah

Communication w/ Interrupts

•  Any 2 threads must communicate via global memory
  foreground and background threads in the interrupt case

»  but still they are 2 threads

  in some cases main and ISR won’t communicate
»  this is common in mainstream CPU’s

»  e.g. ISR’s fix exceptional events that have nothing to do with
 main

  ES’s tend to be different
»  tight coupling between I/O environment

»  controllers role is often to aggregate I/O interrupt events into
 it’s main calculation

•  Interrupts have logically separate registers/stack
  so communication must occur through global memory

»  note that logically doesn’t mean physically
•  registers saved and restored via the same physical stack

»  communication can’t use the stack since it’s not a normal
 subroutine call due to the surprise factor

Page 7

13 CS 5780
School of Computing
University of Utah

2 Thread Communication Example

Global FIFO is a common choice - why?

14 CS 5780
School of Computing
University of Utah

Input Device Interrupts

Page 8

15 CS 5780
School of Computing
University of Utah

Output Device Interrupts

16 CS 5780
School of Computing
University of Utah

Other Interrupt Issues

•  Periodic interrupts
  essential for implementing data acquisition and control

 systems

•  ISR goals
  occur only when needed

  come in clean, perform function, return right away
»  clearly Gadfly loops should be avoided

  minimize time spent in ISR’s

•  Latency
  interface latency

»  time between new data interrupt and when ISR or main gets
 the data

•  beware the difference

»  device latency – response time of external I/O device

  real-time?
»  requires tight bounds on latency guarantees

Page 9

17 CS 5780
School of Computing
University of Utah

Reentrant Programming

•  Program reentrant if
  can be XEQ’s by >1 threads of control

•  Program must
  place local variables on the stack or use some form of

 mutual exclusion to prevent conflict on global storage
 accesses

•  Non-reentrant subroutine
  has a vulnerable window

  error occurs if
»  main or an ISR calls while running in the vulnerable window

  fix:
»  make sure only one active call can be in the vulnerable

 window

»  mutex mechanisms
•  semaphore variable

•  disable interrupts

18 CS 5780
School of Computing
University of Utah

Reentrant or Not?

•  Must be able to recognize potential sources of bugs
  due to non-reentrant code in high-level languages

»  just for yucks we’ll define C to be high level

•  Another example of why you’ll sometimes need to
 examine assembly code
  Is time++ atomic?

»  Yes if compiler generates
•  inc time

»  No if compiler generates
•  ldd time
•  add #1
•  std time

What is the essential difference?

Page 10

19 CS 5780
School of Computing
University of Utah

Atomic Operations

•  Atomic operation
  an operation that once started is guaranteed to finish

•  In most machines
  a single assembly instruction is atomic

»  if an interrupt happens it will be taken between instructions

»  not during

•  Hence

20 CS 5780
School of Computing
University of Utah

Read-Modify-Write Example

•  Typical case where atomicity is desired
  but not guaranteed === bug time BIG TIME

Page 11

21 CS 5780
School of Computing
University of Utah

Write followed by Read Example

•  RAW hazard

22 CS 5780
School of Computing
University of Utah

Nonatomic Multistep Write

Page 12

23 CS 5780
School of Computing
University of Utah

Disabling Interrupts in C

24 CS 5780
School of Computing
University of Utah

A Binary Semaphore

Page 13

25 CS 5780
School of Computing
University of Utah

Interrupt Synchronization Summary

•  Device synchronization requires some protocol
  to permit HW and SW FSM’s to interact

  HW protocols found in the device specifications
»  often cast in concrete

»  SW protocol must be compatible

•  Interrupts are essentially a state machine
  interaction between main and the ISR follows a protocol

»  supported by hardware

  However
»  since you’re writing both main and the ISR

•  you’ll be tempted to not think it through carefully

»  this is why interrupts are hard
•  most of us make this mistake on the initial try or two

•  fortunately mistake enhanced learning works quite well

