
Page 1

1 CS 5780
School of Computing
University of Utah

Introduction to Embedded Systems

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• lab logistics

• interrupt synchronization

• reentrant code

2 CS 5780
School of Computing
University of Utah

Lab Logistics

•  Lab2 Status
  Wed: 3/11 teams have completed their labs

»  likely due to late handout of Lab 2
•  we were 3 days late in getting it to you

•  only fair to give you 3 days extension
–  make appointment w/ William to demonstrate

–  lab reports still due at next weeks lab session

•  BUT other labs will stay on schedule

  Pre-labs must be done before your lab session
»  most of the Wed. non-finishers didn’t do this

»  bottom line
•  you won’t get pre-lab and actual lab done in time if you don’t do the

 pre-lab prior to your lab session

  Don’t just blow off any lab
»  labs are additive

•  e.g. previous lab code will be useful for subsequent labs

•  Schedule through first midterm is on the web
  useful to do the reading before the lecture

Page 2

3 CS 5780
School of Computing
University of Utah

Interrupts

•  External wake-up stimulus
  alternative to the software polling loop

•  Efficient response to rare events
  importance will vary

»  low-power warning  emergency

»  key got pushed  handle soon but not now

  energy efficient
»  processor doesn’t consume energy in a polling loop

»  or it can be doing something else that is useful

•  Highly useful for data acquisition and control

•  Predictable response time?
  depends on how you configure the system

  predictability is a MUST in real-time systems

•  Interrupts add concurrency to your ES software
  this can make you life very difficult

4 CS 5780
School of Computing
University of Utah

What are Interrupts

•  Automatic hardware supported transfer of control
  external hardware runs asynchronously & concurrently

»  w.r.t. controller SW

  interrupts transfer control out of whatever is currently
 running

»  to an interrupt service routine (ISR)
•  looks like a surprise call to the ISR that you write

•  ISR is a background thread

»  ISR return is done via the rti instruction

»  interrupts communicate with main using shared memory
•  concurrency usually requires some form of mutual exclusion control

–  such as semaphores

•  Software interrupts
  these are synchronous

»  SWI instruction (one use would be a breakpoint)

»  automatically happens on 6812 via an unimplemented opcode
•  e.g. ISR may implement the opcode or send command to off chip

 implementation

Page 3

5 CS 5780
School of Computing
University of Utah

ARM vs. Disable

•  ARM
  each off-controller “interrupter”

»  should have a register that has an ARM bit

»  allows the controller to specify who may interrupt

•  Disable
  the I bit in the CC register

»  I=0  all armed interrupts are enabled

»  I=1  disable interrupts
•  note this does not ignore interrupts

•  it just postpones them

  typical disable usage
»  first action in ISR – set I=1

»  do whatever needs to be done that can’t be interrupted

»  set I=0

»  NOTE: not doing this is a common source of significant
 confusion

6 CS 5780
School of Computing
University of Utah

Dedicated vs. Shared

Multiple open-collector
requests tied together
to a shared interrupt
line on the controller
Pull up holds IRQ’ high
when no service is
requested

Separate interrupt
inputs on the controller
Each Iin is dedicated
to a particular request

Page 4

7 CS 5780
School of Computing
University of Utah

6812 Interrupt Inputs

•  IRQ’
  can be disabled or enabled via the I bit in the CCR

  typical use is for non-emergency interrupts
»  e.g. service can be handled and then resume normal control

•  XIRQ’
  once enabled by setting the X bit in the CCR to 0

»  they can’t be disabled

  typical use is emergency
»  low-power

•  ISR saves as much as it can before power is gone
–  return to normal control in this case won’t happen

•  How does the controller know what to do in the shared
 IRQ case?

•  What are the fundamental advantages of shared vs.
 dedicated interrupts?

8 CS 5780
School of Computing
University of Utah

Dedicated vs. Shared

•  Shared
  +’s use of wired-or style interrupts (open collector on 6812)

»  no limit on number of interrupt capable devices

»  simple hardware and wiring

»  expansion to include more I/O devices requires no redesign

  cons:
»  ISR must look at all possible device registers to see what

 service is required
•  there may be more than one

»  dispatch to appropriate routine

»  reset the request bit

•  Dedicated
  +’s: simpler software due to dedicated ISR’s

»  faster since SW doesn’t need to check everybody

»  less software coupling

»  easier to implement priority

  con: you might run out of dedicated Iin’s

Page 5

9 CS 5780
School of Computing
University of Utah

ISR’s

•  ISR: software that handles interrupt requests

•  2 polar styles
  Polled – one large ISR handles all requests

»  shared model

  Vectored
»  dedicated model

•  each Iin causes indirect jump via a specific memory location

•  often indexed via a separate interrupt index register

•  If armed and enabled and a request happens
  execution of main program is suspended

  all registers pushed to stack

  ISR executed and returns (rti)

  all registers restored from stack

  main program is resumed

  see any problems?

10 CS 5780
School of Computing
University of Utah

Interrupt Execution

Page 6

11 CS 5780
School of Computing
University of Utah

When to Use Interrupts

12 CS 5780
School of Computing
University of Utah

Communication w/ Interrupts

•  Any 2 threads must communicate via global memory
  foreground and background threads in the interrupt case

»  but still they are 2 threads

  in some cases main and ISR won’t communicate
»  this is common in mainstream CPU’s

»  e.g. ISR’s fix exceptional events that have nothing to do with
 main

  ES’s tend to be different
»  tight coupling between I/O environment

»  controllers role is often to aggregate I/O interrupt events into
 it’s main calculation

•  Interrupts have logically separate registers/stack
  so communication must occur through global memory

»  note that logically doesn’t mean physically
•  registers saved and restored via the same physical stack

»  communication can’t use the stack since it’s not a normal
 subroutine call due to the surprise factor

Page 7

13 CS 5780
School of Computing
University of Utah

2 Thread Communication Example

Global FIFO is a common choice - why?

14 CS 5780
School of Computing
University of Utah

Input Device Interrupts

Page 8

15 CS 5780
School of Computing
University of Utah

Output Device Interrupts

16 CS 5780
School of Computing
University of Utah

Other Interrupt Issues

•  Periodic interrupts
  essential for implementing data acquisition and control

 systems

•  ISR goals
  occur only when needed

  come in clean, perform function, return right away
»  clearly Gadfly loops should be avoided

  minimize time spent in ISR’s

•  Latency
  interface latency

»  time between new data interrupt and when ISR or main gets
 the data

•  beware the difference

»  device latency – response time of external I/O device

  real-time?
»  requires tight bounds on latency guarantees

Page 9

17 CS 5780
School of Computing
University of Utah

Reentrant Programming

•  Program reentrant if
  can be XEQ’s by >1 threads of control

•  Program must
  place local variables on the stack or use some form of

 mutual exclusion to prevent conflict on global storage
 accesses

•  Non-reentrant subroutine
  has a vulnerable window

  error occurs if
»  main or an ISR calls while running in the vulnerable window

  fix:
»  make sure only one active call can be in the vulnerable

 window

»  mutex mechanisms
•  semaphore variable

•  disable interrupts

18 CS 5780
School of Computing
University of Utah

Reentrant or Not?

•  Must be able to recognize potential sources of bugs
  due to non-reentrant code in high-level languages

»  just for yucks we’ll define C to be high level

•  Another example of why you’ll sometimes need to
 examine assembly code
  Is time++ atomic?

»  Yes if compiler generates
•  inc time

»  No if compiler generates
•  ldd time

•  add #1

•  std time

What is the essential difference?

Page 10

19 CS 5780
School of Computing
University of Utah

Atomic Operations

•  Atomic operation
  an operation that once started is guaranteed to finish

•  In most machines
  a single assembly instruction is atomic

»  if an interrupt happens it will be taken between instructions

»  not during

•  Hence

20 CS 5780
School of Computing
University of Utah

Read-Modify-Write Example

•  Typical case where atomicity is desired
  but not guaranteed === bug time BIG TIME

Page 11

21 CS 5780
School of Computing
University of Utah

Write followed by Read Example

•  RAW hazard

22 CS 5780
School of Computing
University of Utah

Nonatomic Multistep Write

Page 12

23 CS 5780
School of Computing
University of Utah

Disabling Interrupts in C

24 CS 5780
School of Computing
University of Utah

A Binary Semaphore

Page 13

25 CS 5780
School of Computing
University of Utah

Interrupt Synchronization Summary

•  Device synchronization requires some protocol
  to permit HW and SW FSM’s to interact

  HW protocols found in the device specifications
»  often cast in concrete

»  SW protocol must be compatible

•  Interrupts are essentially a state machine
  interaction between main and the ISR follows a protocol

»  supported by hardware

  However
»  since you’re writing both main and the ISR

•  you’ll be tempted to not think it through carefully

»  this is why interrupts are hard
•  most of us make this mistake on the initial try or two

•  fortunately mistake enhanced learning works quite well

