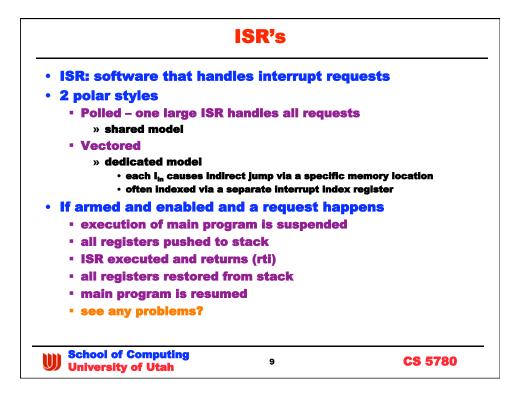
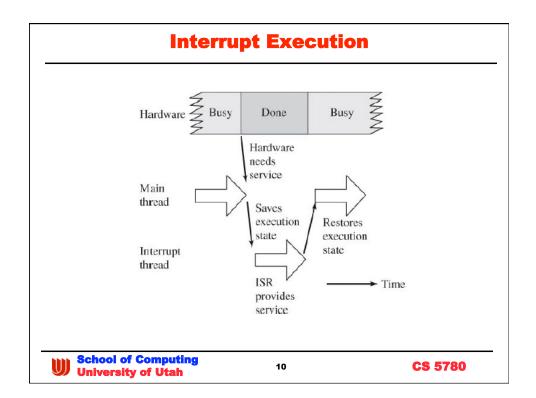
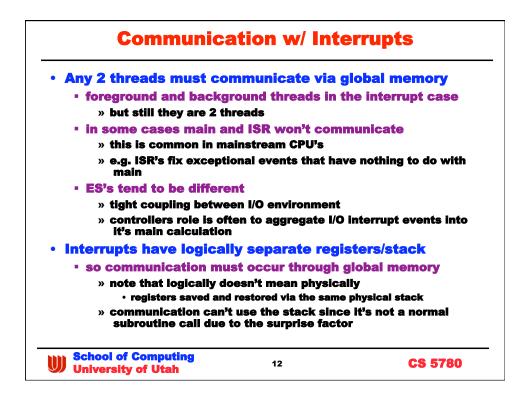
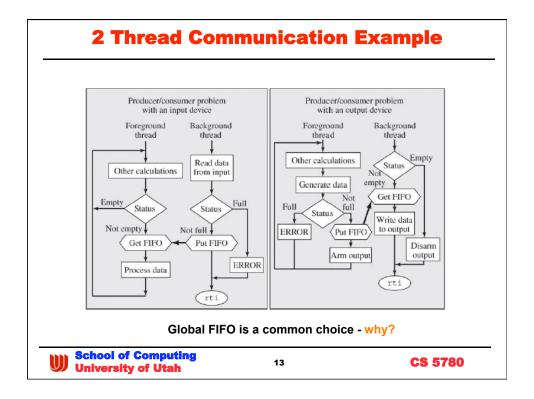
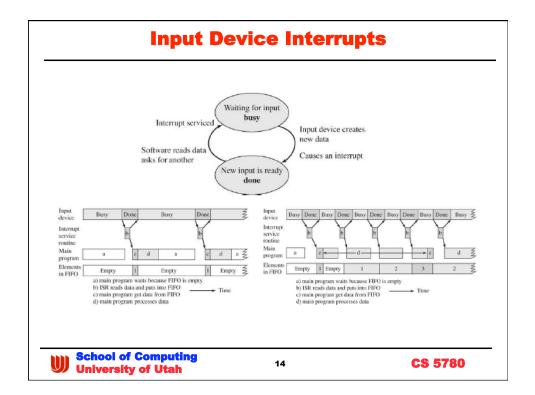

Lab Logistics		
• Lab2 Status		
 Wed: 3/11 teams have 	completed their	labs
» likely due to late han	dout of Lab 2	
 we were 3 days late 	• • •	
 only fair to give you 	3 days extension t w/ William to demonstr	-
	e at next weeks lab ses	
 BUT other labs will a 	stay on schedule	
 Pre-labs must be done 	before your lab	session
» most of the Wed. non	-finishers didn't do) this
» bottom line		
 you won't get pre-lai pre-lab prior to you 		e in time if you don't do the
 Don't just blow off any 	lab	
» labs are additive		
 e.g. previous lab cod 	le will be useful for s	ubsequent labs
Schedule through first	midterm is on t	the web
 useful to do the readin 	g before the lec [.]	ture
School of Computing University of Utah	2	CS 5780

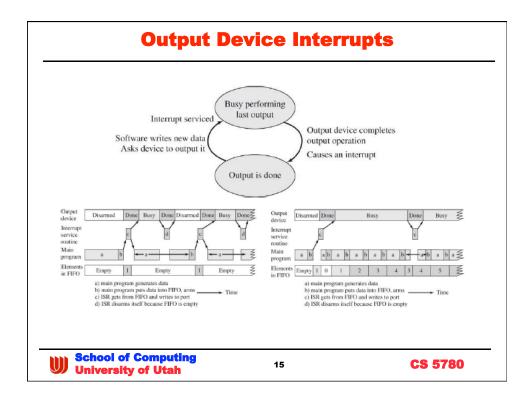

What are Interrupts		
Automatic hardware support	ed transfer of co	ntrol
 external hardware runs async » w.r.t. controller SW 	chronously & conc	urrently
 interrupts transfer control ou running 	t of whatever is cu	irrently
 » to an interrupt service routin • looks like a surprise call to t • ISR is a <i>background</i> thread 	· · ·	
» ISR return is done via the rt:	instruction	
 interrupts communicate with concurrency usually required such as semaphores 	•	•
Software interrupts		
 these are synchronous 		
 SWI instruction (one use work automatically happens on 68 e.g. ISR may implement the implementation 	12 via an unimpleme	-
School of Computing University of Utah	l	CS 5780



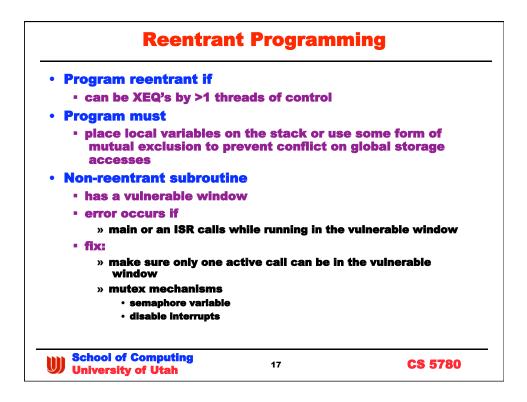


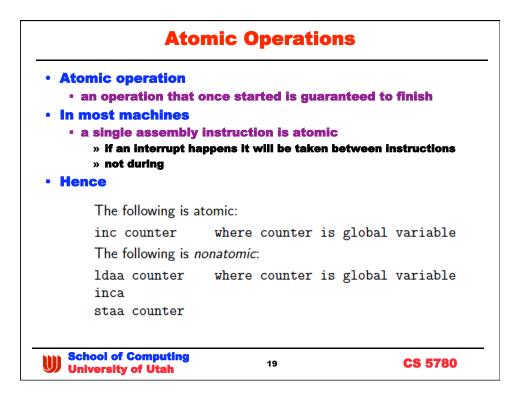

Dedicated vs. Shared		
• Shared		
+'s use of wired-or style	le interrupts (op	en collector on 6812)
» no limit on number of	interrupt capable	devices
» simple hardware and	wiring	
» expansion to include	more I/O devices	requires no redesign
• cons:		
» ISR must look at all p service is required	oossible device re	gisters to see what
 there may be more to 	than one	
» dispatch to appropria	nte routine	
» reset the request bit		
 Dedicated 		
+'s: simpler software d	lue to dedicated	ISR's
 faster since SW does less software couplin easier to implement 	ng	everybody
•		
 con: you might run out 	or dedicated I _{in}	3
School of Computing University of Utah	8	CS 5780

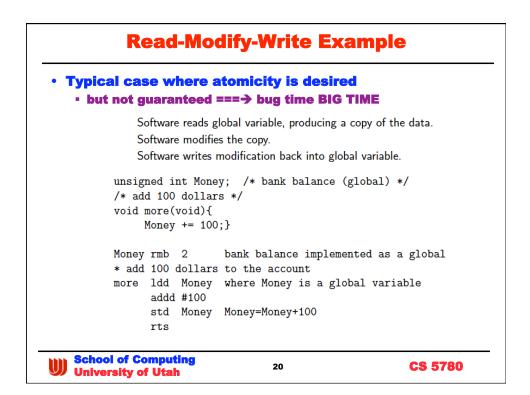


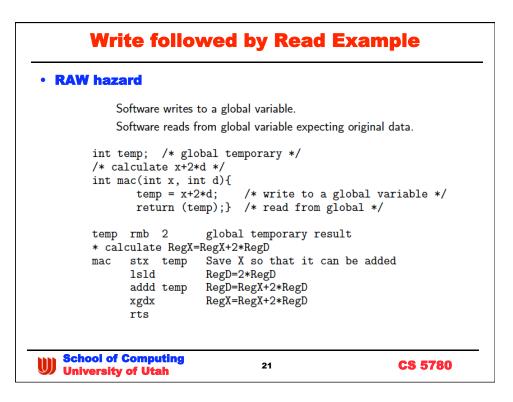


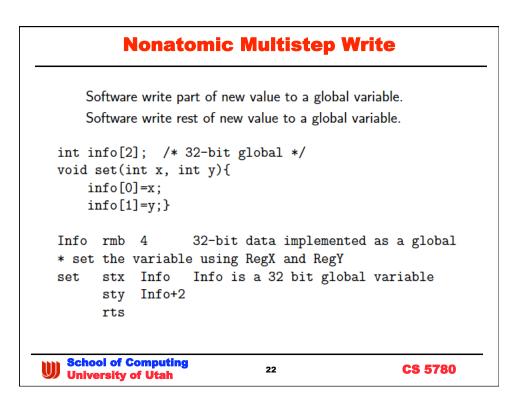
Gadfly	Interrupts	DMA
Predictable	Variable arrival times	Low latency
Simple I/O	Complex I/O	High bandwidth
Fixed load	Variable load	
No concurrency	Concurrent execution	
Nothing else to do	Infrequent alarms	
	Program errors	
	Overflow, illegal op	
	Illegal memory access	
	Machine/memory errors	
	Power failure	
	Real-time clocks	
	Data acquisition/control	



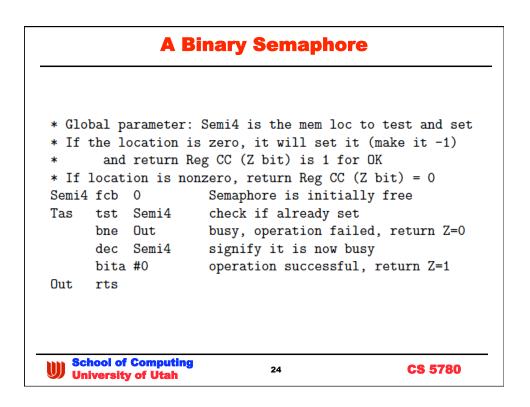


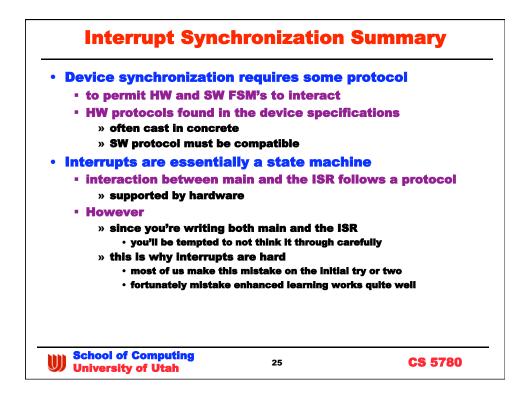



Other Interrupt Issues		
Periodic interrupts		
 essential for implementation systems 	enting data acquis	ition and control
• ISR goals		
• occur only when nee	ded	
 come in clean, perfor » clearly Gadfly loops minimize time spent 	s should be avoided	n right away
• Latency		
 interface latency 		
» time between new (the data • beware the differe	-	hen ISR or main gets
» device latency – rea	sponse time of exter	nal I/O device
real-time?		
» requires tight bound	ds on latency guarar	itees
School of Computing University of Utah	16	CS 5780



Reentrant or Not?		
Must be able to recogni		
 due to non-reentrant construction » just for yucks we'll de 		
Another example of why examine assembly cod	y you'll someti e	mes need to
Is time++ atomic?		
» Yes if compiler generation	ates	
• inc time		
» No if compiler genera	tes	
• 1dd time		
• add #1		
• std time		
What is the essential diff	erence?	
School of Computing	18	CS 5780





Disabling Interrupts in C

```
/* -1 means empty, 0 means it contains somethi
int Empty;
int Message; /* data to be communicated */
int SEND(int data){ int OK;
  char SaveSP;
   asm tpa
  asm staa SaveSP
   asm sei
                /* make atomic, entering critical */
  OK=0;
                  /* Assume it is not OK */
   if(Empty){
       Message=data;
       Empty=0; /* signify it is now contains a message*/
       OK=-1;}
                 /* Successfull */
   asm 1daa SaveSP
   asm tap
                /* end critical section */
  return(OK);}
   School of Computing
                              23
                                                 CS 5780
 University of Utah
```