
Page 1

1 CS 5780
School of Computing
University of Utah

Introduction to Embedded Systems

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• intro to interfacing (non-interrupt style)

• also covered in Chap. 3 of the text

2 CS 5780
School of Computing
University of Utah

Interface Control

•  Critical SW role in ES design
  ES’s distinguished by

»  large variety of I/O devices

»  each device is controlled by software
•  method is device specific

•  but there are general strategies (covered subsequently)

•  I/O interfaces
  physical connections

  software routines that affect information exchange

Page 2

3 CS 5780
School of Computing
University of Utah

Interface Performance Measures

•  Latency
  delay between service request and service completion

»  includes both software and hardware delays

  for real-time systems
»  guarantee must be made for worst-case latency

•  Bandwidth (or throughput)
  maximum rate at which data can be processed

•  Priority
  determines service order when more than one request is

 pending

4 CS 5780
School of Computing
University of Utah

Synchronizing SW w/ I/O Devices

•  Problem: I/O devices operate in parallel w/ controller
  pro: parallelism enhances performance

  con: it’s hard for humans to get it right

•  Hardware common case
  3 states: idle, busy, or done

  when not idle
»  busy and done alternate

•  I/O or CPU bound (unbuffered vs. buffered interfaces)
  I/O bound is typical

»  I/O devices often much slower than controller SW loop
•  synchronization is required

•  unbuffered interface works but SW has to do significant babysitting
–  we’ll start with this more typical case

  CPU bound
»  still need synchronization for accurate information transfer

»  buffering required to store I/O transactions

Page 3

5 CS 5780
School of Computing
University of Utah

Polling (a.k.a. Gadfly) Loop Example

Input device

6 CS 5780
School of Computing
University of Utah

Gadfly: Output Device

Page 4

7 CS 5780
School of Computing
University of Utah

Synchronization Mechanisms

•  Blind cycle
  SW waits a fixed amount of time for the I/O to complete

»  then samples input or produces another output

•  Gadfly (busy waiting)
  check I/O status flag once per iteration (previous example)

»  waits for flag to indicate I/O done state

•  Interrupt
  I/O requests SW to become active

•  Periodic polling
  timer based interrupt requests software activity

»  6812 TCNT timer both more accurate and energy efficient than
 a cycle counting software timer

•  Direct Memory Access (DMA)
  I/O device transfers data to/from controller memory

»  memory used as a mailbox to facilitate communication

8 CS 5780
School of Computing
University of Utah

Blind Cycle Printer Interface

Note implicit timing assumptions:
 printer can always take a new byte every 10ms
 pulse width is long enough for printer to see it in all cases

protocol: data is valid on rising edge of GO signal

Page 5

9 CS 5780
School of Computing
University of Utah

Remember the Device

Port data and
direction registers

10 CS 5780
School of Computing
University of Utah

Initialize and Output to a Printer

Blind Cycle Method

What should be added to this code?

DDR = data direction register
ports T or M both outputs here

Page 6

11 CS 5780
School of Computing
University of Utah

Blind Cycle ADC Interface

Note different GO sense and implicit timing assumption

12 CS 5780
School of Computing
University of Utah

Initialize and Read ADC

Page 7

13 CS 5780
School of Computing
University of Utah

Blind Cycle Evaluation

•  Advantages
  simple and predictable

•  Problems
  inflexible – periodic timing assumption

  inefficient if the delay is long
»  problematic if other parallel threads compete

•  might interfere with periodicity assumption

»  if done wrong
•  faster CPU upgrade may break code

–  e.g. pulse width will be smaller

•  Works well for simple, high-speed devices
  fact: most ES’s have a few blind cycle interfaces

14 CS 5780
School of Computing
University of Utah

Gadfly Synchronization

Page 8

15 CS 5780
School of Computing
University of Utah

Multiple Gadfly Outputs: Single Loop

16 CS 5780
School of Computing
University of Utah

Multiple Gadfly Inputs & Outputs

Page 9

17 CS 5780
School of Computing
University of Utah

Gadfly Evaluation

•  Advantages
  simple

  more flexible than blind cycle

•  Potential “gotcha’s”
  inefficient if devices are not fast

»  due to long wait times

  potentially unpredictable
»  wait until the I/O device is ready

•  if wait is not known then loop time can’t be known

•  if wait is known then use blind cycle model

•  Use with caution
  however a common tactic in many ES’s

»  bizarre but it happens even in real time systems
•  in this case code is even more implicit

•  updates become truly scary

18 CS 5780
School of Computing
University of Utah

Gadfly Keyboard Interface Using Latched Input

Implicit Timing Assumptions?

Page 10

19 CS 5780
School of Computing
University of Utah

Initialize and Read from a Keyboard

20 CS 5780
School of Computing
University of Utah

Gadfly ADC Interface for a Simple Input

Page 11

21 CS 5780
School of Computing
University of Utah

Initialize and Read from an ADC

22 CS 5780
School of Computing
University of Utah

Gadfly External Sensor Interface

Using an overlapping variant of a 4 cycle input handshake

implicit timing assumptions?

Page 12

23 CS 5780
School of Computing
University of Utah

Initialize and Read from a Sensor

24 CS 5780
School of Computing
University of Utah

Gadfly Printer Interface Using Output Handshake

Non-overlapping 4-cycle variant

Notice anything weird here?

Page 13

25 CS 5780
School of Computing
University of Utah

Initialize and Write to a Printer

Is this code robust – if not why not?

26 CS 5780
School of Computing
University of Utah

Gadfly Synch to Digital Thermometer

•  Dallas Semiconductor DS1620
  range -55 to 125 C with .5 C resolution

  data encoded using 9 bit 2’s complement values
»  basis weights

•  -128, 64, 32, 16, 8, 4, 2, 1, 0.5

Page 14

27 CS 5780
School of Computing
University of Utah

More DS1650

•  Can also be used as a thermostat
  2 registers

»  TL – threshold low

»  TH – threshold high

  temp >> TH then THoutput goes to +5 v

  temp << TL then TLoutput goes to +5 v

•  Interface is serial (big banging) – using 3 I/O’s
  RST is reset

  rising CLK samples DQ
»  DQ is bidirectional

•  output to DS1650 is a command
–  sent as 8 bit burst

•  input from DS1650 is also an 8 bit serial burst

  status flags
»  Done: 1valid conversion, 0 in progress

»  THF: 1 temp above TH

»  TLF: 1 temp below TL

28 CS 5780
School of Computing
University of Utah

Interface Code for DS1650

•  Mind numbingly boring to cover in class
  so we won’t

»  advice: go through text section 3.5.7 to get the general idea

»  details will become apparent in the labs

•  Serial interfaces are common
  DS1650 is just an example

  pins are expensive
»  in both $ and Joules

•  pad drivers consume area ($) and energy (p or nJ)

  hence many cheap sensors rely on serial interfaces
»  often with industry standard protocols and interfaces

»  e.g. SPI and SCI
•  serial peripheral/communications interface

»  6812 has direct support for both
•  we’ll use them in the labs

Page 15

29 CS 5780
School of Computing
University of Utah

Concluding Remarks

•  Interfaces are the center of mass for ES control
  diversity of peripheral circuitry diverse control styles

»  this was just an introduction

•  Beware implicit timing assumptions
  make them as explicit as possible in your code

  even if this only makes sense via a comment
»  defining constants is even better

•  blind cycle timer delay

•  gadfly loop iteration count & instruction timing
–  beware lack of portability w/ faster or slower clock speeds

•  Lab 2 is happening this week
  it’s not as assembler intensive as initially planned

»  due to student and TA feedback

  clearly I’m a rookie at teaching this class
»  let’s all hope this condition gets better

30 CS 5780
School of Computing
University of Utah

Initialization

