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Al Davis 

 Today’s topics: 

• intro to interfacing (non-interrupt style) 

• also covered in Chap. 3 of the text 
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Interface Control 

•  Critical SW role in ES design 
  ES’s distinguished by 

»  large variety of I/O devices 

»  each device is controlled by software 
•  method is device specific 

•  but there are general strategies (covered subsequently) 

•  I/O interfaces 
  physical connections 

  software routines that affect information exchange 
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Interface Performance Measures 

•  Latency 
  delay between service request and service completion 

»  includes both software and hardware delays 

  for real-time systems 
»  guarantee must be made for worst-case latency 

•  Bandwidth (or throughput) 
  maximum rate at which data can be processed 

•  Priority 
  determines service order when more than one request is

 pending  
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Synchronizing SW w/ I/O Devices 

•  Problem: I/O devices operate in parallel w/ controller 
  pro: parallelism enhances performance 

  con: it’s hard for humans to get it right 

•  Hardware common case 
  3 states: idle, busy, or done 

  when not idle 
»  busy and done alternate 

•  I/O or CPU bound (unbuffered vs. buffered interfaces) 
  I/O bound is typical 

»  I/O devices often much slower than controller SW loop 
•  synchronization is required 

•  unbuffered interface works but SW has to do significant babysitting 
–  we’ll start with this more typical case 

  CPU bound 
»  still need synchronization for accurate information transfer 

»  buffering required to store I/O transactions 
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Polling (a.k.a. Gadfly) Loop Example 

Input device 
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Gadfly: Output Device 
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Synchronization Mechanisms 

•  Blind cycle 
  SW waits a fixed amount of time for the I/O to complete  

»  then samples input or produces another output 

•  Gadfly (busy waiting) 
  check I/O status flag once per iteration (previous example) 

»  waits for flag to indicate I/O done state 

•  Interrupt 
  I/O requests SW to become active 

•  Periodic polling 
  timer based interrupt requests software activity 

»  6812 TCNT timer both more accurate and energy efficient than
 a cycle counting software timer 

•  Direct Memory Access (DMA) 
  I/O device transfers data to/from controller memory 

»  memory used as a mailbox to facilitate communication 
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Blind Cycle Printer Interface 

Note implicit timing assumptions:  
 printer can always take a new byte every 10ms 
 pulse width is long enough for printer to see it in all cases 

protocol: data is valid on rising edge of GO signal 
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Remember the Device 

Port data and  
direction registers 
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Initialize and Output to a Printer 

Blind Cycle Method 

What should be added to this code? 

DDR = data direction register 
ports T or M both outputs here 
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Blind Cycle ADC Interface 

Note different GO sense and implicit timing assumption 
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Initialize and Read ADC 
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Blind Cycle Evaluation 

•  Advantages 
  simple and predictable 

•  Problems 
  inflexible – periodic timing assumption 

  inefficient if the delay is long 
»  problematic if other parallel threads compete 

•  might interfere with periodicity assumption 

»  if done wrong 
•  faster CPU upgrade may break code 

–  e.g. pulse width will be smaller 

•  Works well for simple, high-speed devices 
  fact: most ES’s have a few blind cycle interfaces 
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Gadfly Synchronization 
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Multiple Gadfly Outputs: Single Loop 
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Multiple Gadfly Inputs & Outputs 
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Gadfly Evaluation 

•  Advantages 
  simple 

  more flexible than blind cycle 

•  Potential “gotcha’s” 
  inefficient if devices are not fast 

»  due to long wait times 

  potentially unpredictable 
»  wait until the I/O device is ready 

•   if wait is not known then loop time can’t be known 

•  if wait is known then use blind cycle model 

•  Use with caution 
  however a common tactic in many ES’s 

»  bizarre but it happens even in real time systems 
•  in this case code is even more implicit 

•  updates become truly scary 
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Gadfly Keyboard Interface Using Latched Input 

Implicit Timing Assumptions? 



Page 10 

19 CS 5780 
School of Computing 
University of Utah 

Initialize and Read from a Keyboard 
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Gadfly ADC Interface for a Simple Input 
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Initialize and Read from an ADC 
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Gadfly External Sensor Interface  

Using an overlapping variant of a 4 cycle input handshake  

implicit timing assumptions? 
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Initialize and Read from a Sensor 
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Gadfly Printer Interface Using Output Handshake 

Non-overlapping 4-cycle variant 

Notice anything weird here? 
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Initialize and Write to a Printer 

Is this code robust – if not why not? 
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Gadfly Synch to Digital Thermometer 

•  Dallas Semiconductor DS1620 
  range -55 to 125 C with .5 C resolution 

  data encoded using 9 bit 2’s complement values 
»   basis weights 

•  -128, 64, 32, 16, 8, 4, 2, 1, 0.5 
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More DS1650 

•  Can also be used as a thermostat 
  2 registers  

»  TL – threshold low 

»  TH – threshold high 

  temp >> TH then THoutput goes to +5 v 

  temp << TL then TLoutput goes to +5 v 

•  Interface is serial (big banging) – using 3 I/O’s 
  RST is reset 

  rising CLK samples DQ 
»  DQ is bidirectional 

•  output to DS1650 is a command 
–  sent as 8 bit burst 

•  input from DS1650 is also an 8 bit serial burst 

  status flags 
»  Done: 1valid conversion, 0 in progress 

»  THF: 1  temp above TH 

»  TLF: 1  temp below TL 
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Interface Code for DS1650 

•  Mind numbingly boring to cover in class 
  so we won’t 

»  advice: go through text section 3.5.7 to get the general idea 

»  details will become apparent in the labs 

•  Serial interfaces are common 
  DS1650 is just an example 

  pins are expensive 
»  in both $ and Joules 

•  pad drivers consume area ($) and energy (p or nJ) 

  hence many cheap sensors rely on serial interfaces 
»  often with industry standard protocols and interfaces 

»  e.g. SPI and SCI 
•  serial peripheral/communications interface 

»  6812 has direct support for both 
•  we’ll use them in the labs 
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Concluding Remarks 

•  Interfaces are the center of mass for ES control 
  diversity of peripheral circuitry  diverse control styles 

»  this was just an introduction 

•  Beware implicit timing assumptions 
  make them as explicit as possible in your code 

  even if this only makes sense via a comment 
»  defining constants is even better  

•  blind cycle  timer delay 

•  gadfly loop  iteration count & instruction timing 
–  beware lack of portability w/ faster or slower clock speeds 

•  Lab 2 is happening this week 
  it’s not as assembler intensive as initially planned 

»  due to student and TA feedback 

  clearly I’m a rookie at teaching this class 
»  let’s all hope this condition gets better 
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Initialization 


