Introduction to Embedded Systems
CS/ECE 6780/5780
Al Davis
Today’s topics:

‘logistics - minor

*more software development issues

School of Computing
!w University of Utah 1 CS 5780

Software Update Problem

¢ Lab machines work
* let us know if they don’t
¢ Personal machines have update issues
* Torrey & William have been trying to find a fix
» so far the solution has been elusive
e Labs
* next lab will be assembly oriented
* hopefully posted by tomorrow

School of Computing
!”J University of Utah 2 CS 5780

Page 1

Modular SW Development

* Modular programming

* breaks SW into distinct and independent modules
= provides:

» functional abstraction to support reuse

» complexity abstraction

¢ divide and conquer approach
» portability

Entry
point

variables Operations
Calls 10 other modules
Decision structures

Local

Looping structures e

Exit
point

School of Computing
!yj University of Utah 3 CS 5780

Global Variables

¢ Global information
= shared by more than one module

= use them to pass data between main() and interrupts
» data is permanent and not deallocated

¢ Can use absolute addressing to access globals

* 1/O ports and registers are considered global values
* it would be silly to view them as locally scoped

School of Computing
!DJ University of Utah 4 CS 5780

Page 2

Local Variables

¢ Temporary information used by only one module
= typically allocated, used, and deallocated
» hence information is not permanent
e Stored on stack or registers
= dynamic allocation/release allows memory reuse
* limited scope provides data protection
* since interrupt saves registers and uses it’s own stack
» code may still be re-entrant
= code is relocatable
* number of local variables
» only limited by stack size

School of Computing
!yj University of Utah 5 CS 5780

Two Local 16-bit Variables: Take 1

;unsigned short calc(void){ unsigned short sum,n;
; sum = 0;

; for(n=100;n>0;n--){

; sum=sum+n;

.

; return sum;

; *kkxxbinding phasexkxxiokkkkx
sum set O 16-bit number
n set 2 16-bit number
; **k*kxxxxallocation phase ***x*x
calc pshx ;save old Reg X
pshx ;allocate n
pshx ;allocate sum
tsx ;stack frame pointer

*X = sum and *X+2 = n (stack grows down)
n and sum are now X relative offsets

School of Computing
!DJ University of Utah 6 CS 5780

Page 3

Take 1 continued

; ¥¥kkxkxx*xkgccess phase 3k 3k %k ok K K K

1dd #0

std sum,x ;sum=0

1dd #100

std n,x ;n=100
loop 1dd n,x ;RegD=n

addd sum,x ;RegD=sum+n
std sum,x ;sum=sum+n
1dd n,x ;n=n-1
subd #1
std n,x
bne loop

; **x*xxxxdeallocation phase *xx
1ldd sum,x ;RegD=sum

pulx ;deallocate sum
pulx ;deallocate n
pulx ;restore old X
rts

V)

School of Computing
University of Utah

CS 5780

Two Local 16-bit Variables: Take 2

* 6812 allows negative offset addressing

; kkxxkbinding phasesxskskkskskkkkskkk
sum set -4 16-bit number
n set -2 16-bit number
; kkxkkkxallocation phase kkxkkk
calc pshx ;save old Reg X
tsx ;stack frame pointer
leas -4,sp ;allocate n,sum

X now points inside the stack frame
leas: load effective address = SP

School of Computing
!yj University of Utah

CS 5780

Page 4

Take 2 continued

; kxkkk*kxk*kgCCcess phase k >k 5k %k ok %k kok k
movw #0,sum,x ;sum=0
movw #100,n,x ;n=100
loop 1dd n,x ;RegD=n
addd sum,x ;RegD=sum+n
std sum,x ;sum=sum+n

ldd n,x ;n=n-1
subd #1

std n,x

bne loop

; **xxkdeallocation phase *¥x*x*

ldd sum,x ;RegD=sum deallocation phase now 1

txs ;deallocation instruction shorter than in
pulx ;restore old X Take 1
rts

!DJ School of Computing

University of Utah 9 CS 5780

Take 2 Execution

sum set -4
n set -2
calc pshx
tsx
leas -4,sp
movw #0,sum,x
movw #100,n,x 0800 | XXXX
loop 1dd n,x 0802 | XXXX ;P < 2§°F6F
addd sum,x 0804 | XXXX || 2

td s
idd ls;l,li X 0806 | XXXX AccD | XXXX

subd #1

std n,x
bne loop
ldd sum,x
txs

pulx

!DJ School of Computing 10 CS 5780

University of Utah

Page 5

Take 2 Execution

sum set
n set
calc pshx
tsx
leas
movw
movw
loop 1ldd
addd
std
ldd
subd
std
bne
1ldd
txs
pulx

-4
-2

-4,sp
#0,sum,x
#100,n,x
n,x
sum, X
sum, X
n,x

#1

n,x

loop
sum, X

0800

XXXX

0802

XXXX

SP

0804

0804

FFFF

RegX

FFFF

0806

XXXX

AccD

XXXX

SP decrements by 2

V)

School of Computing

University of Utah

11

CS 5780

Take 2 Execution

sum set
n set
calc pshx
tsx
leas
movw
movw
loop 1dd
addd
std
1dd
subd
std
bne
1ldd
txs
pulx

-4
-2

-4,sp
#0,sum,x
#100,n,x
n,x
sum,Xx
sum,Xx
n,x

#1

n,x

loop
sum,Xx

0800

XXXX

0802

XXXX

SP

0804

0804

FFFF

RegX

0804

0806

XXXX

AccD

XXXX

)

School of Computing

University of Utah

12

CS 5780

Page 6

Take 2 Execution

sum

set -4

n set -2

calc pshx

tsx

leas -4,sp
movw #0,sum,x
movw #100,n,x
ldd n,x

addd sum,x
std sum,x
ldd n,x

subd #1

std n,x

bne loop

1ldd sum,x
txs

pulx

loop

sum

0800 | XXXX

n | 0802 | XXXX

SP

0800

0804 | FFFF

RegX

0804

0806 | XXXX

AccD

XXXX

V)

School of Computing
University of Utah

13

CS 5780

Take 2 Execution

sum set -4

n set -2

calc pshx
tsx

leas -4,sp

movw #0,sum,x ;0804-4

movw #100,n,x
ldd n,x
addd sum,x
std sum,x
ldd n,x
subd #1
std n,x
bne loop
ldd sum,x
txs

pulx

loop

0800 | 0000

0802 | XXXX

SP

0800

0804 | FFFF

RegX

0804

0806 | XXXX

AccD

XXXX

)

School of Computing
University of Utah

14

CS 5780

Page 7

Take 2 Execution

sum set
n set
calc pshx
tsx
leas
movw
movw
loop 1dd
addd
std
1ldd
subd
std
bne
1ldd
txs
pulx

-2

-4,sp
#0,sum,x
#100,n,x ;0804-2
n,x
sum,Xx
sum,X
n,x

#1

n,x

loop
sum,X

0800

0000

0802

0064

SP

0800

0804

S35

RegX

0804

0806

XXXX

AccD

XXXX

V)

School of Computing
University of Utah

15

CS 5780

Take 2 Execution

sum set
n set
calc pshx
tsx
leas
movw
movw
loop 1ldd
addd
std
ldd
subd
std
bne
ldd
txs
pulx

-4
-2

-4,sp
#0,sum,x
#100,n,x
n,x ;0804-2
sum, X
sum, X
n,x

#1

n,x

loop
sum, X

0800

0000

0802

0064

SP

0800

0804

FFFF

RegX

0804

0806

XXXX

AccD

0064

)

School of Computing
University of Utah

16

CS 5780

Page 8

Take 2 Execution

sum

calc

loop

set
set
pshx
tsx
leas
movw
movw
1dd
addd
std
1dd
subd
std
bne
1ldd
txs
pulx

-
-2

-4,sp
#0,sum,x
#100,n,x
n,x
sum, X
sum,Xx
n,x
#1
n,x
loop
sum,Xx

;0804-4

0800

0000

0802

0064

0804

FFFF

0806

XXXX

SP

0800

RegX

0804

AccD

0064

School of Computing
University of Utah

V)

17

CS 5780

Take 2 Execution

sum

calc

loop

set
set
pshx
tsx
leas
movw
movw
1dd
addd
std
1dd
subd
std
bne
1dd
txs
pulx

-4
-2

-4,sp
#0,sum,x
#100,n,x
n,x
sum, X
sum,x ;0804-4
n,x

#1

n,x

loop
sum, X

0800

0064

0802

0064

SP

0800

0804

FFFF

RegX

0804

0806

XXXX

AccD

0064

School of Computing
University of Utah

)

18

CS 5780

Page 9

Take 2 Execution

sum

set -4

n set -2

calc

loop

pshx

tsx

leas -4,sp
movw #0,sum,x
movw #100,n,x
ldd n,x

addd sum,x
std sum,x
ldd n,x ;0804-2
subd #1

std n,x

bne loop

ldd sum,x
txs

pulx

0800 | 0064

0802 | 0064

SP

0800

0804 | FFFF

RegX

0804

0806 | XXXX

AccD

0064

V)

School of Computing
University of Utah

19

CS 5780

Take 2 Execution

sum set -4

n set -2

calc pshx

tsx

leas -4,sp
movw #0,sum,x
movw #100,n,x
ldd n,x

addd sum,x
std sum,x
ldd n,x

subd #1

std n,x

bne 1loop

ldd sum,x
txs

pulx

loop

0800 | 0064

0802 | 0064

SP

0800

0804 | FFFF

RegX

0804

0806 | XXXX

AccD

0063

)

School of Computing
University of Utah

20

CS 5780

Page 10

Take 2 Execution

sum set -4
n set -2
calc pshx

tsx

leas -4,sp
movw #0,sum,x
movw #100,n,x

loop 1dd n,x

addd sum,x

std sum,x

ldd n,x

subd #1

std n,x ;0804-2
bne loop

ldd sum,x

txs

pulx

0800

0064

0802

0063

SP

0800

0804

FFFF

RegX

0804

0806

XXXX

AccD

0063

V)

School of Computing
University of Utah

21

CS 5780

End of loop

sum set -4
n set -2
calc pshx
tsx
leas -4,sp
movw #0,sum,x
movw #100,n,x
loop 1dd n,x
addd sum,x
std sum,x
ldd n,x
subd #1
std n,x
bne 1loop
ldd sum,x
txs
pulx

0800

13BA

0802

0000

SP

0800

0804

FFFF

RegX

0804

0806

XXXX

AccD

0000

)

School of Computing
University of Utah

22

CS 5780

Page 11

Put Sum in D register

sum set
n set
calc pshx
tsx
leas
movw
movw
loop 1dd
addd
std
ldd
subd
std
bne
ldd
txs
pulx

-
-2

-4,sp
#0,sum,x
#100,n,x
n,x
sum,Xx
sum, X
n,x

#1

n,x

loop
sum,x ;0804-4

0800

13BA

0802

0000

SP

0800

0804

FFFF

RegX

0804

0806

XXXX

AccD

13BA

Computing

!yj lsl‘:lii‘::rls‘i’:y of Utah

23

CS 5780

Restore Stack Pointer & Dellocate

sum set
n set
calc pshx
tsx
leas
movw
movw
loop 1ldd
addd
std
1ldd
subd
std
bne
1ldd
txs
pulx

-4
-2

-4,sp
#0,sum,x
#100,n,x
n,x
sum,Xx
sum,Xx
n,x

#1

n,x

loop
sum,Xx

0800

13BA

0802

0000

SP

0804

0804

FFFF

RegX

0804

0806

XXXX

AccD

13BA

Computing

!yj ls.lflii‘\:::rls‘i’tfy of Utah

24

CS 5780

Page 12

Restore X Register & Voila done

sum set
n set
calc pshx
tsx
leas
movw
movw
loop 1ldd
addd
std
1ldd
subd
std
bne
1ldd
txs
pulx

-2

-4,sp
#0,sum,x
#100,n,x
n,x
sum,Xx
sum,Xx
n,x

#1

n,x

loop
sum,Xx

0800

13BA

0802

0000

SP

0806

0804

peen

RegX

FFFF

0806

XXXX

AccD

13BA

!DJ School of Computing

University of Utah

25

CS 5780

Returning Multiple Parameters: Registers

module: ldaa #1
ldab #2
ldx #3
ldy #4
rts

;returns 4 parameters in 4 registers

*xxkkkkkcalling sequencekkxskkk
jsr module

* Reg A,B,X,Y have four results

!”J School of Computing

University of Utah

26

CS 5780

Page 13

Returning Multiple Values: stack

datal
data2
module:

equ 2

equ 3

movb #1,datal,sp ;1st parameter onto stack
movb #2,data2,sp ;2nd parameter onto stack
rts

*kxkkxkcalling sequenceskkxkk

leas -2,sp ;allocate space for results
jsr module

pula ;1st parameter from stack

staa first

pula ;2nd parameter from stack

staa second

V)

School of Computing
University of Utah

27 CS 5780

More Issues

¢ All assembly exit points

* must balance the stack
» call and return sequences are mirrored

Performing unnecessary /O in a subroutine

= limits reuse

1/0 devices must be considered global

= restrict the number of modules that access them

Information hiding

= expose only the necessary information at the interfaces
» promotes understanding and reduces conceptual complexity
» e.g. hide inner workings of the black box from the user

)

School of Computing
University of Utah 28 CS 5780

Page 14

Module Decomposition

e Coupling

* influence a module’s behavior has on another module
* Task decomposition goals

* make the SW organization easier to understand

= increase the number of modules
» this may increase code footprint and/or increase run time
* due to extra subroutine linkages
» but start properly and then optimize if you have to
» minimize coupling as much as possible
* Develop, connect and test modules in a hierarchy

= top-down - “write no software until every detail is
specified”

= bottom-up - “one brick at a time”

¢ Initial design is best done top-down

¢ Implementation is best done bottom-up
= nhamely you have something to test

IDJ School of Computing

University of Utah 29 CS 5780

Layered Software Systems

* Note
= SW continually changes as better HW or algorithms become
available
* Layered SW facilitates these changes
= top layer is the main program
= lowest layer is the HW abstraction layer
» modules that access the /0 HW
¢ Hierarchy should be strict
= each layer can only call lower layers
» ideal is to only call the next lower layer
= gate or API
» defines the interface at the next lower layer
= if this happens
» each layer can be replaced without affecting other layers
» possible downside: code bloat
+ optimize last policy is a good one
« easler to optimize correctly based on measurements of working code

!DJ School of Computing

University of Utah 30 CS 5780

Page 15

Layered Parallel Port Example

High-level
routines

Low-level
routines

IEEE_Status()

’ Printer hardware

School of Computing
!'JJ University of Utah 31 CS 5780

Layered SW Rules

Modules may make calls to modules in the same layer
Modules may call lower layer only using gate

Module has no access to any function or variable in
another layer

= except via gate
Modules can’t call upper layers
Ideal yet optional
* module calls only next layer down
= all /O access is at the lowest layer
= user interface is at the highest level

School of Computing
!”J University of Utah 32 CS 5780

Page 16

Device Driver Concepts

¢ Purpose
= SW interface to physical I/O devices
» interface API for upper layers
» low-level routines to configure and perform actual 1/O
¢ Separation of policy and mechanism is important

* e.g. interface may include routines to open, read, and write
files

» but it shouldn’t care about what device the files reside on
e HAL
= provide a good hardware abstraction layer

IDJ School of Computing

University of Utah 33 CS 5780

Low-Level Device Drivers

* Normally found in BIOS ROM
* basic /0 system
* Good low-level drivers allow:
= new hardware to be installed
* new algorithms to be implemented

» synchronization w/ completion flags/interrupts
» error detection and recovery methods
= higher-level features built on top of low-level
» OS features like blocking semaphores
» driver features like automatic compression/decompression

!DJ School of Computing

University of Utah 34 CS 5780

Page 17

Encapsulated Objects in ANSI C

e Choose names to reflect the module in which they are
defined

= Example

In C: LCD_Clear ()

In C++: LCD.clear()

Only put public function declarations in header files.

Example (Timer.H):

void Timer_Init(void);

void Timer_Wait1Oms(unsigned short delay);

Since the function wait (unsigned short cycles) is not in
the header file, it is a private function.

School of Computing
!w University of Utah 35 CS 5780

Reentrancy

* Reentrant if
* it can be conurrently executed by 2 or more threads
= or by main and one or more interrupts
¢ Rules for reentrant functions
= must not call a non-reentrant function
* must not touch global variables w/o proper locking

School of Computing
!”J University of Utah 36 CS 5780

Page 18

Coding Guidelines

¢ Guidelines that cannot be checked by a smart compiler
are less effective
¢ Too many guidelines are worthless
= too hard to remember or enforce
* Following is a 10 rule list
* by Gerard Holzman

» leads NASA/JPL’s Lab for Reliable Software
* needless to say it’s hard to debug things in outer space

* note
» these are good things to know

» even though some of the implied tools aren’t available to you
at the moment

IDJ School of Computing a7 CS 5780

University of Utah

Rule 1

Rule: Restrict all code to very simple control flow constructs — do
not use goto statements, setjmp or longjmp constructs, and direct
or indirect recursion.

Simple control translates into easier code verification and
often improved clarity.

Without recursion the function call graph is acyclic which
directly aids in proving boundedness of the code.

This rule doesn’t require a single return point for a function
although this often simplifies control flow.

!DJ School of Computing 38 CS 5780

University of Utah

Page 19

Rule 2

Rule: All loops must have a fixed upper-bound. It must be trivially
possible for a checking tool to prove statically that a preset
upper-bound on the number of iterations of a loop cannot be
exceeded. If the loop-bound cannot be proven statically, the rule is
considered violated.
The absence of recursion and presence of loop bounds
prevents runawway code.
Functions intended to be nonterminating must be proved to
not terminate.
Some functions don't have an obvious upper bound (i.e.
traversing a linked list), so an artificial bound should be set
and checked via an assert.

School of Computing
!yj University of Utah 39 CS 5780

Rule 3

Rule: Do not use dynamic memory allocation after initialization.

Memory allocation code is unpredictable from a time
standpoint and therefore impractical for time critical code.
Many errors are introduced by improper dynamic memory
allocation.

Without dynamic memory allocation the stack is used for
dynamic structures and without recursion bounds can be
proved on stack size.

School of Computing
!DJ University of Utah 40 CS 5780

Page 20

Rule 4

Rule: No function should be longer than what can be printed on a
single sheet of paper in a standard reference format with one line
per statement and one line per declaration. Typically, this means
no more than 60 lines of code per function.

Long functions are like run-on sentences: they need to be
rewritten.

!DJ School of Computing a1 CS 5780

University of Utah

Rule 5

Rule: The assertion density should average to a minimum of two
assertions per function. Assertions are used to check for anomalous
conditions that should never happen in real-life executions.
Assertions must always be side-effect free and should be defined as
Boolean tests. When an assertion fails, an explicit recovery action
must be taken.

Use of assertions is recommended as part of a strong defensive
coding strategy.

Assertions can be used to check pre- and post-conditions of
functions, parameter values, return values, and loop invariants.
Assertions can be disabled in performance critical code
because they are side-effect free.

School of Computing
!DJ University of Utah 42 CS 5780

Page 21

Rule: Data objects must be declared at the smallest possible level
of scope.

Variable will not be modified in unexpected places if they are
not in scope.

It can be easier to debug a problem if the scope of the variable
is smaller.

School of Computing
!yj University of Utah a3 CS 5780

Rule 7

Rule: The return value of non-void functions must be checked by
each calling function, and the validity of parameters must be
checked in each function.

If the response to the error would be no different to the
response to the success then there is no point in checking the
value.

Useless checks can be indicated by casting the return value to
(void).

School of Computing
!DJ University of Utah 44 CS 5780

Page 22

Rule: The use of the preprocessor must be limited to the inclusion
of header files and simple macro definitions. Token pasting,
variable argument lists, and recursive macro calls are not allowed.
All macros must expand into complete syntactic units. The use of
conditional compilation directives is often also dubious but cannot
always be avoided. Each use of a conditional compilation directive
should be flagged by a tool-based checker and justified in the code.

Conditional compilation directives can result in an
exponentially growing number of code versions.

School of Computing
!yj University of Utah a5 CS 5780

Rule: The use of pointers should be restricted. Specifically, no
more than one level of dereferencing is allowed. Pointer dereference
operations may not be hidden in macro definitions or inside typedef
declarations. Function pointers are not permitted.

Pointers are easily misused even by experienced programmers.

Function pointers can severely limit the utility of static code
checkers.

School of Computing
!DJ University of Utah 46 CS 5780

Page 23

Rule 10

Rule: All code must be compiled, from the first day of
development, with all compiler warnings enabled at the compiler’s
most pedantic setting. All code must compile with these settings
without any warnings. All code must be checked daily with at least
one, but preferably more than one, state-of-the-art static code
analyzer and should pass the analyses with zero warnings.

This rule should be followed even in the case when the
warning is invalid.

Code that confuses the compiler or checker enough to result in
an invalid warning should be rewritten for clarity.

Static checkers should be required for any serious coding
project.

School of Computing
!w University of Utah a7 CS 5780

Debugging Theory

* Process of testing, stabilizing, localizing, and correcting
errors

* Research in program monitoring & debugging has not
kept up
= gdb has been around for 30+ years
* so has printf
* alas the Symbolics 3600 system has been left behind
» it shouldn’t have
* ES debugging is even more complicated
* by concurrency and real-time requirements
= printf is a problem because they are slow

School of Computing
!DJ University of Utah 48 CS 5780

Page 24

6811
processor
Memory

Address/data bus

i

Embedded system with
microcompater and V0O

Address contents interpretation

SE000 $B6 1daa $1003
SE001 $10
$E002 $03
SEC03 5B7 graa $1004
$SE004 $10
SE005 $04

6811
processor

ROM socket

|

RAV Address Data
R 8000 B6
R 8001 10
Logic analyzer & S -
o 2 R 800z 03
R 1003 S5
R 30032 B7 staa $1004
R 8004 10
R8005 04
W 1004 55
Registers 1O Ports | b "’; i~
= §83 ==g—= /oMy
PortH = $83 =3} — U 1
Portd - $00 o2 1
Ports = §55 o2 =
= come
PortT - $0F —f——=—* =3
— Socket Seme WS
TCNT = SA0LI Embedded system with

emulator and VO

Address/data bus

_,I

School of Computing
University of Utah

V)

49

CS 5780

Debugging w/ SW

¢ Debugging instrument

» code added to a program to improve visibility of internals
» extra visibility aids debugging
» printf is the common example
¢ Printf instrument policy (use one or more)
= place printf statements in a unique column
= define instruments with a specific naming pattern
= define all instruments to test a run-time global flag
* use conditional compilation (assembly) to turn on/off

School of Computing
University of Utah

)

50

CS 5780

Page 25

Functional/Static Debugging

* Functional @ check that the right computation is done
= Inputs supplied
" run system
= check outputs
* Several methods
* single step
= tracing
* breakpoints w/o filtering
= conditional breakpoints

* instrumentation: printfs to a trace file
» with or without filtering
¢ you only want values within a speclific range

= monitor with a fast display

School of Computing
!yj University of Utah 51 CS 5780

Performance Debugging

* Verification of timing behavior
* run system and check dynamic 1/0 behavior
» count bus cycles using the assembly listing
» instrumentation - measure with a counter

unsigned short before,elasped;
void main(void){
ss=100;
before=TCNT;
tt=sqrt(ss);
elasped=TCNT-before;
}

School of Computing
!DJ University of Utah 52 CS 5780

Page 26

Instrumentation via Output Port

Set bset PORTB,#$40
rts

Clr bclr PORTB,#$40
rts

loop jsr Set

jsr Calculate ; function under test
jsr Clr
bra loop

How would you improve on this?

School of Computing
!yj University of Utah 53 CS 5780

Concluding Remarks

¢ As Arlo says
= “you can’t always do what you’re supposed to do”
* But

= keeping these coding tips in mind will make you a better
programmer

= and reduce hair pulling panic attacks
= in later professional life

» these types of things will be mandated by your company
o albeit in a slightly different form

e So

= might as well develop good habits early
» some of you already have

School of Computing
!DJ University of Utah 54 CS 5780

Page 27

