
Page 1

1 CS 5780
School of Computing
University of Utah

Introduction to Embedded Systems

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• logistics – minor

• more software development issues

2 CS 5780
School of Computing
University of Utah

Software Update Problem

•  Lab machines work
  let us know if they don’t

•  Personal machines have update issues
  Torrey & William have been trying to find a fix

»  so far the solution has been elusive

•  Labs
  next lab will be assembly oriented

  hopefully posted by tomorrow

Page 2

3 CS 5780
School of Computing
University of Utah

Modular SW Development

•  Modular programming
  breaks SW into distinct and independent modules

  provides:
»  functional abstraction to support reuse

»  complexity abstraction
•  divide and conquer approach

»  portability

4 CS 5780
School of Computing
University of Utah

Global Variables

•  Global information
  shared by more than one module

  use them to pass data between main() and interrupts
  data is permanent and not deallocated

•  Can use absolute addressing to access globals

•  I/O ports and registers are considered global values
  it would be silly to view them as locally scoped

Page 3

5 CS 5780
School of Computing
University of Utah

Local Variables

•  Temporary information used by only one module
  typically allocated, used, and deallocated

»  hence information is not permanent

•  Stored on stack or registers
  dynamic allocation/release allows memory reuse

  limited scope provides data protection

  since interrupt saves registers and uses it’s own stack
»  code may still be re-entrant

  code is relocatable

  number of local variables
»  only limited by stack size

6 CS 5780
School of Computing
University of Utah

Two Local 16-bit Variables: Take 1

*X sum and *X+2 n (stack grows down)
n and sum are now X relative offsets

Page 4

7 CS 5780
School of Computing
University of Utah

Take 1 continued

8 CS 5780
School of Computing
University of Utah

Two Local 16-bit Variables: Take 2

•  6812 allows negative offset addressing

X now points inside the stack frame
leas: load effective address SP

Page 5

9 CS 5780
School of Computing
University of Utah

Take 2 continued

deallocation phase now 1
instruction shorter than in
Take 1

10 CS 5780
School of Computing
University of Utah

Take 2 Execution

Page 6

11 CS 5780
School of Computing
University of Utah

Take 2 Execution

SP decrements by 2

12 CS 5780
School of Computing
University of Utah

Take 2 Execution

Page 7

13 CS 5780
School of Computing
University of Utah

Take 2 Execution

n
sum

14 CS 5780
School of Computing
University of Utah

Take 2 Execution

Page 8

15 CS 5780
School of Computing
University of Utah

Take 2 Execution

16 CS 5780
School of Computing
University of Utah

Take 2 Execution

Page 9

17 CS 5780
School of Computing
University of Utah

Take 2 Execution

18 CS 5780
School of Computing
University of Utah

Take 2 Execution

Page 10

19 CS 5780
School of Computing
University of Utah

Take 2 Execution

20 CS 5780
School of Computing
University of Utah

Take 2 Execution

Page 11

21 CS 5780
School of Computing
University of Utah

Take 2 Execution

22 CS 5780
School of Computing
University of Utah

End of loop

Page 12

23 CS 5780
School of Computing
University of Utah

Put Sum in D register

24 CS 5780
School of Computing
University of Utah

Restore Stack Pointer & Dellocate

Page 13

25 CS 5780
School of Computing
University of Utah

Restore X Register & Voila done

26 CS 5780
School of Computing
University of Utah

Returning Multiple Parameters: Registers

Page 14

27 CS 5780
School of Computing
University of Utah

Returning Multiple Values: stack

28 CS 5780
School of Computing
University of Utah

More Issues

•  All assembly exit points
  must balance the stack

»  call and return sequences are mirrored

•  Performing unnecessary I/O in a subroutine
  limits reuse

•  I/O devices must be considered global
  restrict the number of modules that access them

•  Information hiding
  expose only the necessary information at the interfaces

»  promotes understanding and reduces conceptual complexity

»  e.g. hide inner workings of the black box from the user

Page 15

29 CS 5780
School of Computing
University of Utah

Module Decomposition

•  Coupling
  influence a module’s behavior has on another module

•  Task decomposition goals
  make the SW organization easier to understand

  increase the number of modules
»  this may increase code footprint and/or increase run time

•  due to extra subroutine linkages

»  but start properly and then optimize if you have to

»  minimize coupling as much as possible

•  Develop, connect and test modules in a hierarchy
  top-down – “write no software until every detail is

 specified”

  bottom-up – “one brick at a time”

•  Initial design is best done top-down
•  Implementation is best done bottom-up

  namely you have something to test

30 CS 5780
School of Computing
University of Utah

Layered Software Systems

•  Note
  SW continually changes as better HW or algorithms become

 available

•  Layered SW facilitates these changes
  top layer is the main program

  lowest layer is the HW abstraction layer
»  modules that access the I/O HW

•  Hierarchy should be strict
  each layer can only call lower layers

»  ideal is to only call the next lower layer

  gate or API
»  defines the interface at the next lower layer

  if this happens
»  each layer can be replaced without affecting other layers

»  possible downside: code bloat
•  optimize last policy is a good one

•  easier to optimize correctly based on measurements of working code

Page 16

31 CS 5780
School of Computing
University of Utah

Layered Parallel Port Example

32 CS 5780
School of Computing
University of Utah

Layered SW Rules

•  Modules may make calls to modules in the same layer

•  Modules may call lower layer only using gate
•  Module has no access to any function or variable in

 another layer
  except via gate

•  Modules can’t call upper layers

•  Ideal yet optional
  module calls only next layer down

  all I/O access is at the lowest layer

  user interface is at the highest level

Page 17

33 CS 5780
School of Computing
University of Utah

Device Driver Concepts

•  Purpose
  SW interface to physical I/O devices

»  interface API for upper layers

»  low-level routines to configure and perform actual I/O

•  Separation of policy and mechanism is important
  e.g. interface may include routines to open, read, and write

 files
»  but it shouldn’t care about what device the files reside on

•  HAL
  provide a good hardware abstraction layer

34 CS 5780
School of Computing
University of Utah

Low-Level Device Drivers

•  Normally found in BIOS ROM
  basic I/O system

•  Good low-level drivers allow:
  new hardware to be installed

  new algorithms to be implemented
»  synchronization w/ completion flags/interrupts

»  error detection and recovery methods

  higher-level features built on top of low-level
»  OS features like blocking semaphores

»  driver features like automatic compression/decompression

Page 18

35 CS 5780
School of Computing
University of Utah

Encapsulated Objects in ANSI C

•  Choose names to reflect the module in which they are
 defined
  Example

36 CS 5780
School of Computing
University of Utah

Reentrancy

•  Reentrant if
  it can be conurrently executed by 2 or more threads

  or by main and one or more interrupts

•  Rules for reentrant functions
  must not call a non-reentrant function

  must not touch global variables w/o proper locking

Page 19

37 CS 5780
School of Computing
University of Utah

Coding Guidelines

•  Guidelines that cannot be checked by a smart compiler
 are less effective

•  Too many guidelines are worthless
  too hard to remember or enforce

•  Following is a 10 rule list
  by Gerard Holzman

»  leads NASA/JPL’s Lab for Reliable Software
•  needless to say it’s hard to debug things in outer space

  note
»  these are good things to know

»  even though some of the implied tools aren’t available to you
 at the moment

38 CS 5780
School of Computing
University of Utah

Rule 1

Page 20

39 CS 5780
School of Computing
University of Utah

Rule 2

40 CS 5780
School of Computing
University of Utah

Rule 3

Page 21

41 CS 5780
School of Computing
University of Utah

Rule 4

42 CS 5780
School of Computing
University of Utah

Rule 5

Page 22

43 CS 5780
School of Computing
University of Utah

Rule 6

44 CS 5780
School of Computing
University of Utah

Rule 7

Page 23

45 CS 5780
School of Computing
University of Utah

Rule 8

46 CS 5780
School of Computing
University of Utah

Rule 9

Page 24

47 CS 5780
School of Computing
University of Utah

Rule 10

48 CS 5780
School of Computing
University of Utah

Debugging Theory

•  Process of testing, stabilizing, localizing, and correcting
 errors

•  Research in program monitoring & debugging has not
 kept up
  gdb has been around for 30+ years

  so has printf
  alas the Symbolics 3600 system has been left behind

»  it shouldn’t have

•  ES debugging is even more complicated
  by concurrency and real-time requirements

  printf is a problem because they are slow

Page 25

49 CS 5780
School of Computing
University of Utah

HW Debugging

50 CS 5780
School of Computing
University of Utah

Debugging w/ SW

•  Debugging instrument
»  code added to a program to improve visibility of internals

»  extra visibility aids debugging

»  printf is the common example

•  Printf instrument policy (use one or more)
  place printf statements in a unique column
  define instruments with a specific naming pattern

  define all instruments to test a run-time global flag

  use conditional compilation (assembly) to turn on/off

Page 26

51 CS 5780
School of Computing
University of Utah

Functional/Static Debugging

•  Functional check that the right computation is done
  Inputs supplied

  run system
  check outputs

•  Several methods
  single step

  tracing

  breakpoints w/o filtering

  conditional breakpoints

  instrumentation: printf’s to a trace file
»  with or without filtering

•  you only want values within a specific range

  monitor with a fast display

52 CS 5780
School of Computing
University of Utah

Performance Debugging

•  Verification of timing behavior
  run system and check dynamic I/O behavior

»  count bus cycles using the assembly listing

»  instrumentation – measure with a counter

Page 27

53 CS 5780
School of Computing
University of Utah

Instrumentation via Output Port

How would you improve on this?

54 CS 5780
School of Computing
University of Utah

Concluding Remarks

•  As Arlo says
  “you can’t always do what you’re supposed to do”

•  But
  keeping these coding tips in mind will make you a better

 programmer

  and reduce hair pulling panic attacks

  in later professional life
»  these types of things will be mandated by your company

•  albeit in a slightly different form

•  So
  might as well develop good habits early

»  some of you already have

