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 Today’s topics: 

• logistics – minor 

• more software development issues 
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Software Update Problem 

•  Lab machines work 
  let us know if they don’t 

•  Personal machines have update issues 
  Torrey & William have been trying to find a fix 

»  so far the solution has been elusive 

•  Labs 
  next lab will be assembly oriented 

  hopefully posted by tomorrow 



Page 2 

3 CS 5780 
School of Computing 
University of Utah 

Modular SW Development 

•  Modular programming 
  breaks SW into distinct and independent modules 

  provides: 
»  functional abstraction to support reuse 

»  complexity abstraction 
•  divide and conquer approach 

»  portability 
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Global Variables 

•  Global information 
  shared by more than one module 

  use them to pass data between main() and interrupts 
  data is permanent and not deallocated 

•  Can use absolute addressing to access globals 

•  I/O ports and registers are considered global values 
  it would be silly to view them as locally scoped 
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Local Variables 

•  Temporary information used by only one module 
  typically allocated, used, and deallocated 

»  hence information is not permanent 

•  Stored on stack or registers 
  dynamic allocation/release allows memory reuse 

  limited scope provides data protection 

  since interrupt saves registers and uses it’s own stack 
»  code may still be re-entrant 

  code is relocatable 

  number of local variables 
»  only limited by stack size 
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Two Local 16-bit Variables: Take 1 

*X  sum and *X+2  n (stack grows down) 
n and sum are now X relative offsets 
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Take 1 continued 
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Two Local 16-bit Variables: Take 2 

•  6812 allows negative offset addressing 

X now points inside the stack frame 
leas: load effective address  SP 
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Take 2 continued 

deallocation phase now 1 
instruction shorter than in  
Take 1 
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Take 2 Execution 
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Take 2 Execution 

SP decrements by 2 
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Take 2 Execution 
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Take 2 Execution 

n 
sum 
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Take 2 Execution 
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Take 2 Execution 
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Take 2 Execution 
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Take 2 Execution 
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Take 2 Execution 
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Take 2 Execution 
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Take 2 Execution 
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Take 2 Execution 
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End of loop 
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Put Sum in D register 
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Restore Stack Pointer & Dellocate 
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Restore X Register & Voila done 

26 CS 5780 
School of Computing 
University of Utah 

Returning Multiple Parameters: Registers 
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Returning Multiple Values: stack 
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More Issues 

•  All assembly exit points 
  must balance the stack 

»  call and return sequences are mirrored 

•  Performing unnecessary I/O in a subroutine 
  limits reuse 

•  I/O devices must be considered global 
  restrict the number of modules that access them 

•  Information hiding 
  expose only the necessary information at the interfaces 

»  promotes understanding and reduces conceptual complexity 

»  e.g. hide inner workings of the black box from the user 
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Module Decomposition 

•  Coupling 
  influence a module’s behavior has on another module 

•  Task decomposition goals 
  make the SW organization easier to understand 

  increase the number of modules 
»  this may increase code footprint and/or increase run time 

•  due to extra subroutine linkages 

»  but start properly and then optimize if you have to 

»  minimize coupling as much as possible 

•  Develop, connect and test modules in a hierarchy 
  top-down – “write no software until every detail is

 specified” 

  bottom-up – “one brick at a time” 

•  Initial design is best done top-down 
•  Implementation is best done bottom-up 

  namely you have something to test 
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Layered Software Systems 

•  Note 
  SW continually changes as better HW or algorithms become

 available 

•  Layered SW facilitates these changes 
  top layer is the main program 

  lowest layer is the HW abstraction layer 
»  modules that access the I/O HW 

•  Hierarchy should be strict 
  each layer can only call lower layers 

»  ideal is to only call the next lower layer 

  gate or API  
»  defines the interface at the next lower layer 

  if this happens 
»  each layer can be replaced without affecting other layers 

»  possible downside: code bloat 
•  optimize last policy is a good one 

•  easier to optimize correctly based on measurements of working code 
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Layered Parallel Port Example 
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Layered SW Rules 

•  Modules may make calls to modules in the same layer 

•  Modules may call lower layer only using gate 
•  Module has no access to any function or variable in

 another layer 
  except via gate 

•  Modules can’t call upper layers 

•  Ideal yet optional 
  module calls only next layer down 

  all I/O access is at the lowest layer 

  user interface is at the highest level 
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Device Driver Concepts 

•  Purpose 
  SW interface to physical I/O devices 

»  interface API for upper layers 

»  low-level routines to configure and perform actual I/O 

•  Separation of policy and mechanism is important 
  e.g. interface may include routines to open, read, and write

 files 
»  but it shouldn’t care about what device the files reside on 

•  HAL 
  provide a good hardware abstraction layer  
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Low-Level Device Drivers 

•  Normally found in BIOS ROM 
  basic I/O system  

•  Good low-level drivers allow: 
  new hardware to be installed 

  new algorithms to be implemented 
»  synchronization w/ completion flags/interrupts 

»  error detection and recovery methods 

  higher-level features built on top of low-level 
»  OS features like blocking semaphores 

»  driver features like automatic compression/decompression 
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Encapsulated Objects in ANSI C 

•  Choose names to reflect the module in which they are
 defined 
  Example 
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Reentrancy 

•  Reentrant if 
  it can be conurrently executed by 2 or more threads 

  or by main and one or more interrupts 

•  Rules for reentrant functions 
  must not call a non-reentrant function 

  must not touch global variables w/o proper locking 
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Coding Guidelines 

•  Guidelines that cannot be checked by a smart compiler
 are less effective 

•  Too many guidelines are worthless 
  too hard to remember or enforce 

•  Following is a 10 rule list  
  by Gerard Holzman 

»  leads NASA/JPL’s Lab for Reliable Software 
•  needless to say it’s hard to debug things in outer space 

  note 
»  these are good things to know 

»  even though some of the implied tools aren’t available to you
 at the moment 
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Rule 1 
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Rule 2 
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Rule 3 
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Rule 4 
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Rule 5 
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Rule 6 
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Rule 7 
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Rule 8 
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Rule 9 
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Rule 10 
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Debugging Theory 

•  Process of testing, stabilizing, localizing, and correcting
 errors 

•  Research in program monitoring & debugging has not
 kept up 
  gdb has been around for 30+ years 

  so has printf 
  alas the Symbolics 3600 system has been left behind 

»  it shouldn’t have 

•  ES debugging is even more complicated 
  by concurrency and real-time requirements 

  printf is a problem because they are slow 
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HW Debugging 
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Debugging w/ SW 

•  Debugging instrument 
»  code added to a program to improve visibility of internals  

»  extra visibility aids debugging 

»  printf is the common example 

•  Printf instrument policy (use one or more) 
  place printf statements in a unique column 
  define instruments with a specific naming pattern 

  define all instruments to test a run-time global flag 

  use conditional compilation (assembly) to turn on/off 
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Functional/Static Debugging 

•  Functional  check that the right computation is done 
  Inputs supplied 

  run system 
  check outputs 

•  Several methods 
  single step 

  tracing 

  breakpoints w/o filtering 

  conditional breakpoints 

  instrumentation: printf’s to a trace file 
»  with or without filtering 

•  you only want values within a specific range 

  monitor with a fast display 
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Performance Debugging 

•  Verification of timing behavior 
  run system and check dynamic I/O behavior 

»  count bus cycles using the assembly listing 

»  instrumentation – measure with a counter 
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Instrumentation via Output Port 

How would you improve on this? 
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Concluding Remarks 

•  As Arlo says 
  “you can’t always do what you’re supposed to do” 

•  But 
  keeping these coding tips in mind will make you a better

 programmer 

  and reduce hair pulling panic attacks 

  in later professional life 
»  these types of things will be mandated by your company 

•  albeit in a slightly different form 

•  So 
  might as well develop good habits early 

»  some of you already have 


