
Page 1

1 CS 5780
School of Computing
University of Utah

Introduction to Embedded Systems

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• logistics - minor

• synopsis of last lecture

• software desig

• finite state machine based control

2 CS 5780
School of Computing
University of Utah

Logistics

•  Labs start Wed
  make sure you attend your designated session

»  lab has to be signed off by relevant TA before you leave

•  Check web page lab section assignments
  I made one error – might be others

»  it’s a hectic term for me

•  Mistake last lecture
  #$AB – denotes a hex immediate value

  #24 – denotes a decimal immediate value

  color me “duh”

3 CS 5780
School of Computing
University of Utah

Last Time

•  Overview of 6812 assembly
  reminder - read manual for full ISA

  assembler translates symbolic version into executable
 object code

•  Key things to remember
  addressing modes are key to read/write assembly code

  CC’s and subsequent branches are critical focus points
»  know which instruction set the CC’s for the branch

  HCS12 provides extensive math for 8-bits and wider
»  make sure you understand the relevant instructions and CC

 bits

»  otherwise math is what you’d expect

  Assembly
»  allows full control of the HW

»  but permits very basic and very serious mistakes
•  e.g. save and restore registers on a function call

•  mismatched stack frames, etc.

4 CS 5780
School of Computing
University of Utah

ES Software Design

•  ES success depends on both HW and SW design
  most are not large but can be quite complex

•  Requisite SW skills
  modular design, layered architecture, abstraction

  AND verification
»  ES’s held to a much higher “correctness” standard

•  Writing good software is an art
  requires practice (e.g. this course is lab intensive)

  can not be an end of project add-on

•  Good SW w/ average HW will outperform good HW w/
 average SW
  why?

Page 2

5 CS 5780
School of Computing
University of Utah

Good SW – what does it look like?

•  Quantitative measures
  Dynamic efficiency – number of CPU cycles and power

  Static efficiency – RAM/ROM code/data footprint
  Design constraints satisfied?

•  Qualitative measures
  Ease of debug

  Ease of verification – prove correct

  Ease of maintenance – enhance features

•  Note
  sacrifice clarity to enhance speed is usually a bad choice

»  leads to bugs and leads to maintenance nightmares

•  You’re a good programmer when:
  you can understand your code a year later

  others find it relatively easy to modify your code

6 CS 5780
School of Computing
University of Utah

SW Maintenance

•  Extremely important design phase
  may persist longer than other phases

»  think iTunes vs. a particular iPod platform

•  Includes
  initial bug fixes

  add features

  optimization

  porting to new hardware

  porting to new OS or run-time system

  reconfigure to handle new requirements

•  Documentation
  should assist maintenance

  resides in and outside of the SW itself
»  caveat – programmer and external tech writer are seldom the

 same people
•  ever read the manual and then decided just to figure it out?

7 CS 5780
School of Computing
University of Utah

Comments

•  Internal to the SW documentation
  restating the operation doesn’t add to the content

•  Variable definition – explain how it’s used

•  Constant definition – explain meaning

8 CS 5780
School of Computing
University of Utah

Subroutine Comments

•  On definition – 2 types of comments needed
  client comments (place in header or subroutine start)

»  explain how function is used

»  how parameters are passed
•  input: call by value or reference

–  range & format (8/16 bit, signed/unsigned, etc.)

–  examples if appropriate

•  output: return by value or reference
–  range & format

–  examples if appropriate

»  describe errors and results that are returned

»  example calling sequence

»  local variables and their significance

  colleague comments
»  explain how the function works within the function body

Page 3

9 CS 5780
School of Computing
University of Utah

Self-Documenting Code

•  SW written in a way that both purpose and function are
 self-apparent
  use descriptive names for variables, constants, & functions

»  remember that someone else be doing maintenance
•  5780: this doesn’t really apply except to your lab partner

•  but might as well develop good habits and stick to it

»  document your naming convention

  formulate and organize your code
»  into a well defined hierarchy of sub-components

»  ideal
•  match problem decomposition with program structure

  liberal use of #define or equ statements helps

10 CS 5780
School of Computing
University of Utah

Using #define

11 CS 5780
School of Computing
University of Utah

Naming Conventions

•  Names should have meaning
  avoid ambiguities

  give hints about type
  use same name to refer to the same type of object

•  Some basic conventions
  use prefix to identify public or global objects

  use upper and lower case to specify object scope

  use capitalization to delimit words

•  Companies often have their own conventions
  since original code monkey and maintenance may involve

 different people

  often have a specific documentation trail
»  often interned in the code repository

•  svn, rcs, …, there are many

»  releases often include a “what’s changed & why” log

12 CS 5780
School of Computing
University of Utah

Examples

Given this table what are the conventions?

Page 4

13 CS 5780
School of Computing
University of Utah

Abstraction

•  A SW abstraction factors common functionality out of
 diverse examples
  advantages

»  faster to develop because some building blocks already exist

»  easier to debug
•  due to separation of concept and implementation

»  easier to understand
•  understand the abstraction and then see how it is implemented

»  easier to change
•  if you understand it you know how to change it

•  Finite state machine (FSM)
  simple concept consisting of:

»  states, inputs, outputs, and state transitions

  FSM software is easy to understand, debug, & modify
  works equally well in HW or SW

14 CS 5780
School of Computing
University of Utah

FSM Concepts

•  When are outputs assigned?
  by state ::= Moore machine

  by transition ::= Mealy machine
  equally powerful

»  so use the version that is most intuitive for the problem at
 hand

»  turn the crank procedure exists to convert Mealy  Moore

•  When are the inputs observed
  when they happen  asynchronous FSM
  based on some periodic time step  synchronous FSM

»  we’ll focus on this one since asynch FSM’s have some
 additional complexity

»  and most microcontrollers are synchronous
•  which makes synch FSM’s an easy and natural choice

•  Anybody use this for their lab1 abstraction?
  when? == button_push

15 CS 5780
School of Computing
University of Utah

2-bit Gray Code FSM

00 01

11 01

reset

Moore or Mealy?

Where are the inputs?

What is λ ?

λ

λ

λ

λ

16 CS 5780
School of Computing
University of Utah

Mealy 2-bit Gray Counter

reset

λ/00

λ/01

λ/11

λ/10

In the case where there are
no inputs – Mealy vs. Moore
distinction is moot.

reset – ALWAYS needs to
be there since it helps
to know which state is
in play when you start.

Looks like we need a timer.

Page 5

17 CS 5780
School of Computing
University of Utah

FSM’s in HW

CL
S
R
G

CL

inputs
NS

Out

CLK

CL
S
R
G

O
R
Ginputs

Out

NS

Out

Moore

Mealy

18 CS 5780
School of Computing
University of Utah

6812 Timer Details

•  TCNT is a 16-bit unsigned counter
  increments at a rate defined by 3 prescale bits in TSCR2

»  bit 7 in TSCR1 enables use of the TCNT timer

  assuming a 4 MHz E clock

  When TCNT overflows, TOF flag in TFLG2 register is set
»  causes an interrupt if the TOI bit in TSCR2 is set.

/2PR-bits

19 CS 5780
School of Computing
University of Utah

Implementing a Time Delay

Note modular (maybe taken too far)

20 CS 5780
School of Computing
University of Utah

Traffic Light

•  2 one-way roads

other ways to do it?

Page 6

21 CS 5780
School of Computing
University of Utah

Moore FSM & State Table

For every input next_state must be spec’d

22 CS 5780
School of Computing
University of Utah

Implementing the FSM in SW

•  Required
  initialize timer (in this case)

  initial state specified
»  entry point or go there on some reset signal

  build FSM controller
»  implementation options

•  mess of jumps (OK for simple state machine – bad for complex)
–  bigger code footprint

–  con: complete rewrite if FSM changes

•  table based
–  bigger data footprint

•  pointer based
–  even bigger data footprint but will run faster

–  in this case you don’t really care

•  maybe some others?

23 CS 5780
School of Computing
University of Utah

Goto Pseudocode

goN:
 output = 0x21;
 wait(30);
 if (E==0) goto goN;
waitN:
 output = 0x22;
 wait(5)
goE:
 output = 0x0C;
 wait(30);
 if (N==0) goto goE;
waitE:
 output = 0x14;
 wait(5);
 goto goN;

24 CS 5780
School of Computing
University of Utah

Table vs. Pointer Implementation in C

Page 7

25 CS 5780
School of Computing
University of Utah

Assembly: Setting up constants

26 CS 5780
School of Computing
University of Utah

Assembly Main Control Loop

27 CS 5780
School of Computing
University of Utah

Partial Memory Map

28 CS 5780
School of Computing
University of Utah

Execution

Page 8

29 CS 5780
School of Computing
University of Utah

Execution

30 CS 5780
School of Computing
University of Utah

Execution

31 CS 5780
School of Computing
University of Utah

Execution

32 CS 5780
School of Computing
University of Utah

Execution

Page 9

33 CS 5780
School of Computing
University of Utah

Execution

34 CS 5780
School of Computing
University of Utah

Exectution

35 CS 5780
School of Computing
University of Utah

Executioon

36 CS 5780
School of Computing
University of Utah

Weary Robot Interface

Page 10

37 CS 5780
School of Computing
University of Utah

Mealy FSM for a Robot Controller

Difference – output depends on transition so 2 tables: next_state & output
go through the example in your text

38 CS 5780
School of Computing
University of Utah

Concluding Remarks

•  FSM’s are your friend
  nice abstraction mechanism

»  works well for both HW & SW control design

»  context aware transfer function model of the world
•  context = state

•  transfer function = CL model = output response to input stimulus

•  context + transfer function models  FSM

  multiple implementation styles
»  choice depends on problem/environment constraints

•  code or data footprint

•  execution speed

»  if no critical constraints
•  then pick the implementation strategy that max’s clarity

•  usually transparency between abstract FSM (state graph) and code

•  Other FSM benefits
  turn the crank minimization procedures

»  developed for HW designs also apply to SW – NICE!
•  any intro book on digital design will show you how

•  What what should you do if your FSM gets huge?

