Introduction to Embedded Systems

Logistics

* Labs start Wed
= make sure you attend your designated session

» lab has to be signed off by TA bef you leave
CS/ECE 6780/5780 * Check web page lab section assignments
. = 1 made one error - might be others
Al Davis » It’s a hectic term for me
* Mistake last lecture
Today’s topics: = #$AB - denotes a hex immediate value
. . = #24 - denotes a decimal Inmediate value
+logistics - minor - color me “duh”
*synopsis of last lecture
-software desig
«finite state machine based control
School of Computing School of Computing
W) university of Utah ' Cs 5780 W) university of Utah 2 €S 5780
Last Time ES Software Design

* Overview of 6812 assembly
= reminder - read manual for full ISA
. bler tr lat ymbolic

object code

* Key things to remember
= addressing modes are key to read/write assembly code
= CC’s and subsequent branches are critical focus points

» know which instruction set the CC’s for the branch

= HCS12 provides extenslve math for 8-blts and wider

» make sure you the and CC
bits
» otherwise math Is what you’d expect
= Assembly
» allows full control of the HW
» but permits very basic and very serlous mistakes
* e.g. save and ona call
+ mismatched stack frames, etc.
School of Computing
W) university of Utah 3 Cs 5780

* ES success depends on both HW and SW design
= most are not large but can be quite complex
* Requisite SW skills
= modular design, layered architecture, abstraction
= AND verlification
» ES’s held to a much higher “correctness” standard
* Writing good software Is an art
= requires practice (e.g. this Is lab Int lve)
= can not be an end of project add-on
* Good SW w/ average HW will outperform good HW w/
average SW
= why?

mj School of Computing a CS 5780

University of Utah

Page 1

Good SW - what does it look like?

* Quantitative measures
= Dy ic efficiency — ber of CPU cycles and p.
= Static efficiency- RAM/ROM code/data footprint
= Design constraints satisfied?
¢ Qualitative measures
= Ease of debug
= Ease of verification - prove correct
= Ease of int - enh feat
* Note
= sacrifice clarity to enhance speed is usually a bad choice
» leads to bugs and leads to maintenance nightmares
* You’re a good programmer when:
= you can understand your code a year later
= others find it relatively easy to modify your code

SW Maintenance

* Extremely important design phase

= may persist longer than other phases

» think ITunes vs. a particular IPod platform

¢ Includes

= initial bug fixes

= add features

= optimization

= porting to new hardware

= porting to new 0OS or run-time system

= reconflgure to handle new requirements
* Documentation

T

. In and of the SW Itself

» caveat — programmer and external tech writer are seldom the
same people
* ever read the manual and then declded Just to figure It out?

W) Doiverctty of ean s ©s 5780 W) Domverctty of e s cs 5780
Comments Subroutine Comments

* Internal to the SW documentation
= restating the operation doesn’t add to the content

BAD X=X+4; /* add 4 to X */
Flag=0; /* set Flag=0 */
GOOD X=X+4; /* 4 is added to correct for the
offset (mV) in the transducer */
Flag=0; /* means no key has been typed */

¢ Variable definition — explain how it’s used

int SetPoint; /* Desired temperature, 16-bit signed

value with resolution of 0.5C,
a range of -55C to +125C,
a value of 25 means 12.5C */

* Constant definition — explain meaning

V=999; /* 999mV is the maximum possible voltage
*/

mj School of Computing 7 CS 5780

University of Utah

* On definition - 2 types of comments needed
lient ts (pl inh or subroutine start)

» explaln how function Is used
» how parameters are passed
* Input: call by value or reference
- range & format (8/16 bit, signed/unsigned, etc.)
- examples If appropriate
* outputz return by value or reference
- range & format

- examples i appropriate
» describe errors and that are ret: d
» calling

» local variables and thelr significance
= colleague comments
» explain how the function works within the function body

mj School of Computing 8 CS 5780

University of Utah

Page 2

Self-Documenting Code

* SW written in a way that both purpose and function are
self-apparent
= use descriptive names for variables, constants, & functions
» that else be doing maintenance

* 5780: this doesn’t really apply except to your lab partner
* but might as well develop good hablts and stick to it

» your tion
= formulate and organize your code
» Into a well defined y of sub. 't
» ideal
« match p Wwith prog

= liberal use of #define or equ statements helps

Using #define

// An inappropriate
#define size 10
short data[size];

use of #define.

void initialize(void){ short j

for(j=0;j<10;j++)

data[j]=0;
};

// An appropriate use of #define.

#define size 10
short datal[size];

void initialize(void){ short j

for(j=0;j<size;j++)

data[j]=0;
};

School of Computing School of Computing

W) university of Utah ° €S 5780 W) university of Utah 1 €S 5780
Naming Conventions Examples

* Names should have meaning

= avoid ambiguities

= give hints about type

= use same name to refer to the same type of object Typ e Exam p| e
* Some basic conventions tant PORTA

= use prefix to identify public or global objects constan S

= use upper and lower case to specify object scope local variables maxTem perature

* use capltalization to delimit words private global variables MaxTemperature
. Confpame_s ?ften have their own ctfnventlons) public global variables DAC_MaxVoltage

= since original code key and t may I . . .

different people private function ClearTime
= often have a specific documentation trail public function Timer_ClearTime
» often interned in the code repository
* sVn, Ics, ..., there are many
» often Include a “what's ged & why” log Given this table what are the conventions?

School of Computing School of Computing

()] University of Utah 1 CS 5780 ()] University of Utah 12 CS 5780

Page 3

Abstraction

* A SW abstraction factors common functionality out of
diverse examples
= advantages

» faster to p b some g block ly exist
» easier to debug
* due to of and

» easler to understand
* understand the abstraction and then see how it is implemented
» easler to change
« If you understand It you know how to change It
¢ Finite state machine (FSM)
= simple concept conslisting of:
» states, Inputs, outputs, and state transitions
= FSM software Is easy to understand, debug, & modify
= works equally well in HW or SW

!DJ School of Computing

University of Utah 13 CS 5780

FSM Concepts

* When are outputs assigned?
= by state ::= Moore machine
= by transition :z:= Mealy machine
= equally powerful

» so use the verslon that Is most Intuitive for the problem at
hand

» turn the crank procedure exists to convert Mealy €-> Moore
* When are the inputs observed
= when they happen 2 asyncl FSM
= based on some perlodic time step & synchronous FSM

» we’ll focus on this one since asynch FSM’s have some
additional complexity

» and most mi are h
+ which makes synch FSM’s an easy and natural cholce

* Anybody use this for their lab1 abstraction?
= when? == button_push

!DJ School of Computing

University of Utah 14 CS 5780

2-bit Gray Code FSM

Moore or Mealy?
Where are the inputs?

What isA?

mj School of Computing 15 CS 5780

University of Utah

Mealy 2-bit Gray Counter

In the case where there are
no inputs — Mealy vs. Moore
distinction is moot.

reset — ALWAYS needs to
be there since it helps
to know which state is
in play when you start.

Looks like we need a timer.

mj School of Computing 16 CS 5780

University of Utah

Page 4

FSM’s in HW

CLK

6812 Timer Details

* TCNT is a 16-bit unsigned counter

= increments at a rate defined by 3 prescale bits in TSCR2
» hit 7 In TSCR1 enables use of the TCNT timer
= assuming a 4 MHz E clock

PR2 PR1 PRO Divide by TCNT Period TCNT Frequency
0 0 0 1 250ns 4 MHz
0 0 1 2 500ns 2 MHz SR bis
o 1 o 4 1us 1 MHz 12
0 1 1 8 2us 500 kHz
1 0 0 16 4pus 250 kHz

Mealy 1 0 1 32 8us 125 kHz
1 1 0 64 16ps 62.5 kHz
1 1 1 128 32us 31.25 kHz

= When TCNT overflows, TOF flag in TFLG2 register is set
» causes an Interrupt if the TOI bit In TSCR2 Is set.
School of Computin; School of Computin
W) university of Utah 7 Cs 5780 W) university of Utah 1 Cs 5780

Implementing a Time Delay

Program 2.10

Timer functions that implement a time delay. Note modular (maybe taken too far)

mj School of Computing 19 CS 5780

University of Utah

Traffic Light

* 2 one-way roads

PAI North

2
6811/6812 PAO

PBS
PB4

East

©e)

PB2
PBI ®®0] ‘

PBO I

other ways to do it?

mj School of Computing 20 CS 5780

University of Utah

Page 5

Moore FSM & State Table

00, 10 C

Input vector <N,E>

Output vector
<RE,YE,GE,RN,YN,GN>

No cars | Car E | Car N | Car N,E

goN goN waitN | goN waitN

00, 01

waitN | goE goE goE goE

goE goE goE waitE | waitE

waitE | goN goN goN goN

For every input next_state must be spec’d

UJ School of Computing 21 CS 5780

University of Utah

Implementing the FSM in SW

* Required
= initialize timer (in this case)
= initial state specified
» entry point or go there on some reset signal
= bulld FSM controller
» Implementation options
+ mess of Jumps (OK for simple state machine - bad for complex)
- bigger code footprint
- con: complete rewrite if FSM changes
+ table based
- bigger data footprint
* pointer based
- even bigger data footprint but will run faster
- In this case you don't really care
+ maybe some others?

!DJ School of Computing 22 CS 5780

University of Utah

Goto Pseudocode

Table vs. Pointer Implementation in C

Program 2.11

goN:
o C output = 0x21;
wait(30);
if (E==0) goto goN;
waitN:
output = 0x22;
00, 01 wait(5)
?::?i 10, 11 goE:
- output = 0x0C;
w0 (T oaito wait(30);
& if (N==0) goto goE;
waitE:
output = 0x14;
wait(5);
goto goN;
School of Computin
mj Unlversity of Ul:ah ° 23 CS 5780

unsigned short Time;

unsigned char Next[41;);
typedef const struct State STyp:

(0x21,3000,
(0x22, 50
(0x0C, 3000, {goE, go W
{0x14, 500, {goN, goN, goN,goN}}};
ansigned char Input;

void main(void){
unsigned char n; // state number

it10ms (Fs
ORTA&0X03
n].Next [Input];

// Table imp ntation // Pointer implementation
fwo 6812 © 4 b
- const struct State { const struct State {
IC implementations of a e fonei chasOut
unsigned char Out; unsigned char Out;
oore FSM & 9

unsigned short Time;

const s

uct State *Next[4];};
const struct State STyp;

{0x22,
{oxoc,
{ox14,

// state pointer

signed char Input;

void main(void) {
Timer_Init(

DDRB = OxFF;

DDRA &= ~0x03;

Pt = goN;
while (1) {
PORTB = Pt->Out
Timer_WaitlOms (Pt->Time);
Input = PORTA&OX03;

Pt = Pt->Next[Input];

Page 6

Assembly: Setting up constants

ouT
WAIT
NEXT
goll

equ
equ
equ
fcb
fdb
fdb
waitN fcb
fdb
fdb
fcb
fdb
fdb
waitE fcb
fdb
fdb

$800

0 ;offset for output

1 ;offset for time (8 bits+0UT)
3 ;offset for next state (16 bits+WAIT)
$21 ;East red, north green
3000 ;30 second delay
gol,waitN,goN,waitN

$22 ;East red, north yellow
500 ;5 second delay

goE, goE, goE, goE

$0C ;East green, north red
3000 ;30 second delay
goE,goE,waitE,waitE

$14 ;East yellow, north red
500 ;5 second delay

goN, goll, goN, goN

School of Computing

Assembly Main Control Loop

Main 1ds
bsr
movb
movb
1ldx
1ldab
stab
1dy
bsr
1ldab
andb
1slb
abx
1ldx
bra

FSM

#$4000 ;stack init
Timer_Init ;enable TCNT
#$FF ,DDRB ;PORTB5-0 set to output to lights

#$00,DDRA ;PORTA1-0 set to input from sensors
#goN ;Initialize state pointer (register X)
0UT, x

PORTB

WAIT,x

Timer Wait10ms

PORTA

#$03 ;Keep the bottom two bits

;Multiply by two b/c addresses are 2 bytes
;add 0,2,4,6

NEXT,x

FSM

School of Computing
W) university of Utah 28 Cs 5780 W) university of Utah 28 CS 5780
Partial Memory Map Execution
‘ State ‘ Address | Value ‘ Comment ‘ ldx #goll [State [Address | Value [Comment |
org $0800 goN | 0800 51 out FSM 1dab OUT,x goN | 0800 21 out
OUT ~ equ 0 0801 | 0B B8 | wait stab PORTB 0801 | OB B8 | wait
WAIT equ 1 08030800 'm0 ldy WAIT,x 0803 | 0800 | nsO
NEXT equ 3 e o508 ns bsr Timer_Wait1Oms 0805 | 08 0B | nsl
goll fcb $21 nsl 1dab PORTA 0807 | 0800 | ns2
fdb 3000 0807 | 0800 |ns2 andb #$03 0809 | 08 0B | ns3
fdb gol,waitN, | 0809 | 080B |ns3 1s1b waitN | 080B | 22 out
goN,waity | WaitN | 080B |22 | out abx 080C__ | 01 F4 | wait
waitl fcb $22 080C 01 F4 | wait ldx NEXT,x 080E 0816 | nso
£db 500 080E 08 16 | nsO bra FSM 0810 0816 | nsl
0810 08 16 | nsl 0812 0816 | ns2
fdb goE,goE,
2OF. gOE 0812 | 0816 | ns2 RegX | 08 00 0814 | 0816 | ns3
goE fcb $0C 0814 | 0816 | ns3 ieg\B’ ;i XX goE 0816 | 0C | out
goE 0816 0C out ce
School of Computing School of Computing
W university of utah = €8 5780 W) university of Utah e Cs 5780

Page 7

Execution Execution
1dx #goll [State [Address [Value | Comment ldx #gol State | Address | Value | Comment

FSM 1dab OUT,x ;0800+0 | goN | 0800 21 out FSM 1dab OUT,x goN | 0800 21 out

stab PORTB 0801 0B B8 | wait stab PORTB 0801 0B B8 | wait

1dy WAIT,x 0803 08 00 | nsO 1dy WAIT,x ;0800+1 0803 08 00 | nsO

bsr Timer Wait1Oms 0805 08 0B | nsl bsr Timer_WaitiOms 0805 08 0B | nsl

1ldab PORTA 0807 08 00 | ns2 1ldab PORTA 0807 08 00 | ns2

andb #$03 0809 08 0B | ns3 andb #$03 0809 08 0B | ns3

1slb waitN | 080B 22 out 1slb waitN | 080B 22 out

abx 080C 01 F4 | wait abx 080C 01 F4 | wait

ldx NEXT,x 080E 08 16 | nsO 1dx NEXT,x 080E 08 16 | nsO

bra FSM 0810 0816 | nsl bra FSM 0810 08 16 | nsl

0812 | 0816 |ns2 0812 | 0816 | ns2

Ezg fg(o)‘zx 0814 | 0816 | ns3 RegX | 08 00 081410816 T ne3
E 0816 0C t RegY | 0B B8

AccB | 21 80 ou AccB o1 goE | 0816 0C out
School of Computing School of Computin

W) university of Utah 2 Cs 5780 W) university of Utah 30 Cs 5780
Execution Execution
ldx #goN State | Address | Value | Comment 1dx #goN State | Address | Value | Comment

FSM 1dab OUT,x goN [0800 21 out FSM 1dab OUT,x goN | 0800 21 out

stab PORTB 0801 0B B8 | wait stab PORTB 0801 0B B8 | wait

1dy WAIT,x 0803 08 00 | nsO 1dy WAIT,x 0803 08 00 | nsO

bsr Timer WaitiOms 0805 08 0B | nsl bsr Timer_WaitiOms 0805 08 0B | nsl

1dab PORTA 0807 08 00 | ns2 ldab PORTA 0807 08 00 | ns2

andb #$03 0809 08 0B | ns3 andb #$03 0809 08 0B | ns3

1slb waitN | 080B 22 out 1slb waitN | 080B 22 out

abx 080C 01 F4 | wait abx 080C 01 F4 | wait

ldx NEXT,x 080E 08 16 | nsO ldx NEXT,x 080E 08 16 | nsO

bra FSM 0810 | 0816 | nsl bra FsSH 0810 [0816 | nsl

0812 08 16 | ns2 0812 08 16 | ns2

RegX {380 0814 [0816 [ns3 Ee% 883 ?308 0814 [0816 [ns3

<€ <€ E [0816

AcB T8l goE 0816 0C out AccE 101 go 0C out

School of Computing School of Computin,
W) university of Utah 3 CS 5780 W) university of e 32 cs 5780

Execution Exectution
1dx #goN State | Address | Value | Comment ldx #goN State | Address | Value | Comment
FSM 1dab OUT,x goN [0800 |21 out FSM 1ldab OUT,x goN 0800 |21 out
stab PORTB 0801 0B B8 | wait stab PORTB 0801 0B B8 | wait
1dy WAIT,x 0803 08 00 | nsO 1dy WAIT,x 0803 08 00 | nsO
bsr Timer _Waiti1Oms 0805 08 0B | nsl bsr Timer_WaitiOms 0805 08 0B | nsl
1dab PORTA 0807 08 00 | ns2 1dab PORTA 0807 08 00 | ns2
andb #303 0809 | 08 0B | ns3 andb #$03 0809 | 08 0B | ns3
1slb waitN | 080B 22 out 1slb waitN | 080B 22 out
abx 080C | 01 F4 | wait abx 080C | 01 F4 | wait
ldx NEXT,x 080E | 08 16 | nsO ldx NEXT,x 080E | 08 16 | nsO
bra FSM 0810 | 0816 | nsl bra FSM 0810 | 0816 | nsl
0812 08 16 | ns2 0812 08 16 | ns2
RegX | 08 00 0814|0816 | ns3 RegX | 08 02 0814 |08 16 | ns3
RegY | 0B B8 ZoE | 0816 | 0C | out RegY | 0B B8 ZoE | 0816 | 0C | out
AccB | 02 AccB | 02
W) Griversity of Uean s Cs 5780 W) Griversity of Gean s cs 5780
Executioon Weary Robot Interface
1dx #gol State | Address | Value | Comment
FSM 1dab OUT,x goN 0800 |21 out
stab PORTB 0801 0B B8 | wait
1dy WAIT,x 0803 08 00 | nsO
bsr Timer WaitiOms 0805 08 0B | nsl 6811/6812 PAl
1dab PORTA 0807 | 0800 | ns2 Y
andb #$03 0800 | 08 0B | ns3 s
1slb waitN | 080B 22 out PB2
abx 080C | 01 F4 | wait gg({
1dx NEXT,x ;0802+3 080E | 08 16 | nsO /
bra FSM 0810 | 0816 | nsl
0812 08 16 | ns2
RegX | 08 0B 0814 [0816 | ns3
RegY | 0B B8 ZoE 0816 | 0C | out
AccB | 02
W - cs s7ap W cs s7a0

Page 9

Mealy FSM for a Robot Controller

Concluding Remarks

Tired/SitDown Tired/LieDown

Curious/None Curious/None Tired/None
Anxious/None OK/None OK/None
OK/None . .

Anxious/StandUp

Difference — output depends on transition so 2 tables: next_state & output
go through the example in your text

* FSM’s are your friend
= nice abstraction mechanism
» works well for both HW & SW control design
» aware ion model of the world
+ context = state
¢ transfer function = CL model = output response to Input stimulus
+ context + transfer function models > FSM
= mulitiple Implementation styles
» choice on p i
* code or data footprint
+ execution speed
» If no critical constraints
+ then pick the Implementation strategy that max’s clarity
+ usually transparency between abstract FSM (state graph) and code
* Other FSM benefits
= turn the crank minimization procedures
» developed for HW designs also apply to SW — NICEI
+ any Intro book on digital design will show you how

* What what should you do if your FSM gets huge?

School of Computing
U] University of Utah 37 CS 5780

!DJ School of Computing 38 CS 5780

University of Utah

Page 10

