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1 CS 5780 
School of Computing 
University of Utah 

Introduction to Embedded Systems 

CS/ECE 6780/5780 

Al Davis 

 Today’s topics: 

• logistics - minor 

• synopsis of last lecture 

• software desig 

• finite state machine based control 
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Logistics 

•  Labs start Wed 
  make sure you attend your designated session 

»  lab has to be signed off by relevant TA before you leave 

•  Check web page lab section assignments 
  I made one error – might be others 

»  it’s a hectic term for me 

•  Mistake last lecture 
  #$AB – denotes a hex immediate value 

  #24 – denotes a decimal immediate value 

  color me “duh” 
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Last Time 

•  Overview of 6812 assembly 
  reminder - read manual for full ISA 

  assembler translates symbolic version into executable
 object code  

•  Key things to remember 
  addressing modes are key to read/write assembly code 

  CC’s and subsequent branches are critical focus points 
»  know which instruction set the CC’s for the branch 

  HCS12 provides extensive math for 8-bits and wider 
»  make sure you understand the relevant instructions and CC

 bits 

»  otherwise math is what you’d expect 

  Assembly  
»  allows full control of the HW 

»  but permits very basic and very serious mistakes 
•  e.g. save and restore registers on a function call 

•  mismatched stack frames, etc. 
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ES Software Design 

•  ES success depends on both HW and SW design 
  most are not large but can be quite complex 

•  Requisite SW skills 
  modular design, layered architecture, abstraction 

  AND verification 
»  ES’s held to a much higher “correctness” standard 

•  Writing good software is an art 
  requires practice (e.g. this course is lab intensive) 

  can not be an end of project add-on 

•  Good SW w/ average HW will outperform good HW w/
 average SW 
  why? 
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Good SW – what does it look like? 

•  Quantitative measures 
  Dynamic efficiency – number of CPU cycles and power 

  Static efficiency – RAM/ROM code/data footprint 
  Design constraints satisfied? 

•  Qualitative measures 
  Ease of debug  

  Ease of verification – prove correct 

  Ease of maintenance – enhance features 

•  Note 
  sacrifice clarity to enhance speed is usually a bad choice 

»  leads to bugs and leads to maintenance nightmares 

•  You’re a good programmer when: 
  you can understand your code a year later 

  others find it relatively easy to modify your code  
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SW Maintenance 

•  Extremely important design phase 
  may persist longer than other phases 

»  think iTunes vs. a particular iPod platform 

•  Includes 
  initial bug fixes 

  add features 

  optimization  

  porting to new hardware 

  porting to new OS or run-time system 

  reconfigure to handle new requirements 

•  Documentation 
  should assist maintenance 

  resides in and outside of the SW itself 
»  caveat – programmer and external tech writer are seldom the

 same people 
•  ever read the manual and then decided just to figure it out? 
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Comments 

•  Internal to the SW documentation 
  restating the operation doesn’t add to the content 

•  Variable definition – explain how it’s used 

•  Constant definition – explain meaning 
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Subroutine Comments 

•  On definition – 2 types of comments needed 
  client comments (place in header or subroutine start) 

»  explain how function is used 

»  how parameters are passed 
•  input: call by value or reference 

–  range & format (8/16 bit, signed/unsigned, etc.) 

–  examples if appropriate 

•  output: return by value or reference 
–  range & format 

–  examples if appropriate 

»  describe errors and results that are returned 

»  example calling sequence 

»  local variables and their significance 

  colleague comments 
»  explain how the function works within the function body 
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Self-Documenting Code 

•  SW written in a way that both purpose and function are
 self-apparent 
  use descriptive names for variables, constants, & functions 

»  remember that someone else be doing maintenance 
•  5780: this doesn’t really apply except to your lab partner 

•  but might as well develop good habits and stick to it 

»  document your naming convention 

  formulate and organize your code 
»  into a well defined hierarchy of sub-components 

»  ideal 
•  match problem decomposition with program structure 

  liberal use of #define or equ statements helps 
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Using #define 
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Naming Conventions 

•  Names should have meaning 
  avoid ambiguities 

  give hints about type 
  use same name to refer to the same type of object 

•  Some basic conventions 
  use prefix to identify public or global objects 

  use upper and lower case to specify object scope 

  use capitalization to delimit words 

•  Companies often have their own conventions 
  since original code monkey and maintenance may involve

 different people 

  often have a specific documentation trail 
»  often interned in the code repository 

•  svn, rcs, …, there are many 

»  releases often include a “what’s changed & why” log 
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Examples 

Given this table what are the conventions? 



Page 4 

13 CS 5780 
School of Computing 
University of Utah 

Abstraction 

•  A SW abstraction factors common functionality out of
 diverse examples 
  advantages 

»  faster to develop because some building blocks already exist 

»  easier to debug  
•  due to separation of concept and implementation 

»  easier to understand 
•  understand the abstraction and then see how it is implemented 

»  easier to change 
•  if you understand it you know how to change it 

•  Finite state machine (FSM) 
  simple concept consisting of: 

»  states, inputs, outputs, and state transitions 

  FSM software is easy to understand, debug, & modify 
  works equally well in HW or SW 
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FSM Concepts 

•  When are outputs assigned? 
  by state ::= Moore machine 

  by transition ::= Mealy machine 
  equally powerful 

»  so use the version that is most intuitive for the problem at
 hand 

»  turn the crank procedure exists to convert Mealy  Moore 

•  When are the inputs observed 
  when they happen  asynchronous FSM 
  based on some periodic time step  synchronous FSM 

»  we’ll focus on this one since asynch FSM’s have some
 additional complexity 

»  and most microcontrollers are synchronous 
•  which makes synch FSM’s an easy and natural choice 

•  Anybody use this for their lab1 abstraction? 
  when? == button_push 
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2-bit Gray Code FSM 

00 01 

11 01 

reset 

Moore or Mealy? 

Where are the inputs? 

What is λ ?


λ


λ


λ


λ
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Mealy 2-bit Gray Counter 

reset 

λ/00 

λ/01 

λ/11 

λ/10 

In the case where there are 
no inputs – Mealy vs. Moore  
distinction is moot. 

reset – ALWAYS needs to  
be there since it helps 
to know which state is 
in play when you start. 

Looks like we need a timer. 
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FSM’s in HW 

CL 
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G

CL 

inputs 
NS 

Out 

CLK 

CL 
S
R
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Out 

Moore 

Mealy 
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6812 Timer Details 

•  TCNT is a 16-bit unsigned counter  
  increments at a rate defined by 3 prescale bits in TSCR2 

»  bit 7 in TSCR1 enables use of the TCNT timer 

  assuming a 4 MHz E clock 

  When TCNT overflows, TOF flag in TFLG2 register is set 
»  causes an interrupt if the TOI bit in TSCR2 is set. 

/2PR-bits 
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Implementing a Time Delay 

Note modular (maybe taken too far) 
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Traffic Light  

•  2 one-way roads  

other ways to do it? 
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Moore FSM & State Table 

For every input next_state must be spec’d 
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Implementing the FSM in SW 

•  Required 
  initialize timer (in this case) 

  initial state specified  
»  entry point or go there on some reset signal 

  build FSM controller 
»  implementation options 

•  mess of jumps (OK for simple state machine – bad for complex) 
–  bigger code footprint 

–  con: complete rewrite if FSM changes 

•  table based 
–  bigger data footprint 

•  pointer based 
–  even bigger data footprint but will run faster 

–  in this case you don’t really care  

•  maybe some others? 
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Goto Pseudocode 

goN: 
   output = 0x21; 
   wait(30); 
   if (E==0) goto goN; 
waitN: 
   output = 0x22; 
   wait(5) 
goE: 
   output = 0x0C; 
   wait(30); 
   if (N==0) goto goE; 
waitE: 
   output = 0x14; 
   wait(5); 
   goto goN;  
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Table vs. Pointer Implementation in C 
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Assembly: Setting up constants 
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Assembly Main Control Loop 
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Partial Memory Map 
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Execution 
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Execution 
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Execution 
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Execution 

32 CS 5780 
School of Computing 
University of Utah 

Execution 
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Execution 
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Exectution 
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Executioon 
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Weary Robot Interface 
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Mealy FSM for a Robot Controller 

Difference – output depends on transition so 2 tables: next_state & output 
go through the example in your text 
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Concluding Remarks 

•  FSM’s are your friend 
  nice abstraction mechanism 

»  works well for both HW & SW control design 

»  context aware transfer function model of the world 
•  context = state 

•  transfer function = CL model = output response to input stimulus 

•  context + transfer function models  FSM 

  multiple implementation styles 
»  choice depends on problem/environment constraints 

•  code or data footprint 

•  execution speed 

»  if no critical constraints 
•  then pick the implementation strategy that max’s clarity 

•  usually transparency between abstract FSM (state graph) and code 

•  Other FSM benefits 
  turn the crank minimization procedures  

»  developed for HW designs also apply to SW – NICE! 
•  any intro book on digital design will show you how 

•  What what should you do if your FSM gets huge? 


