Introduction to Embedded Systems
CS/ECE 6780/5780
Al Davis
Today’s topics:

*some logistics nagging

-assembly language programming

!DJ School of Computing

Some Nagging

* App tly Y
= several students do not yet have lab partners or lab sections
identified

» lab sectlon Is your cholce but you have to let me know via emall
» note this is due TODAY
registered but not on email list
» Min, Najar, Sreedharan, Tateoka
team identified but no lab section
» Balley & McDougall, Tomer & Onelda
no team or lah section
» Behera, Fallatah, Jones, Lezin, Maheshwarl, Martin, Min
» Morley, Najar, Rolfe, Sreedharan, Tateoka, Wiser, Worley
¢ If your name appears above - see me after class
= note | may have some book-keeping errors
» but we have to get this sorted out
» lab sectlon assignments will appear on the web today
+ If you spot an error emall teach-cs5780 ASAP

University of Utah 1 Cs 5780 U]] 3:“;:,;?:,‘:,‘;'?,‘;::"9 2 Cs 5780
Why Assembly? Assembly Language Development Process

* Taken ECE/CS 44007
= then you know

¢ Typically you’ll write your lab codes in C
if everything works
» then no need for
if it doesn’t work
» examine assembly to see what the complier did to your code
» and some things are just easier in assembly
« direct of
* you can embed assembly code In your C code flles
= works in simulator but not on the processor
» pl only k bits > object code
* Hence

= you’ll need to be famlllar with assembly and object code
representations

» you'll probably do this In JIT mode

mj School of Computing

Unlversity of Utah 3 CS 5780

Microcontroller
Source code Assembler Loader
; MC9s12C32 Processor
PTT equ $0240 N Object code
DDRT equ $0242 N /’_\
org $4000 $4000 860F
Main ldaa #$0F $4002 7A0242
DDRT $4005 8605
Controller $4007 7A0240
ldaa #5 $400A 8606
staa PTT ; 0101 $400C 720240
ldaa #6 $400F 860A
staa PTT ; 0110 $4011 7A0240
ldaa #10
staa PTT ; 1010
ldaa #9
staa PTT ; 1001 Bus
bra Controller
org $FFFE Ty ‘ .
fdb Main External circuits
and devices

mj School of Computing

Unlversity of Utah 4 CS 5780

Page 1

6812 Assembly Language

* Details are in references on the web page
= too boring to enumerate in class
= so we’ll cover the highlights
* Addresses and symbols
= assembler usually is a 2-pass process
» 12 hulld the symbol table:values map
« explicit value
— PIT equ $2040
* Implicit value: label a particular location In the code
» 2: croate object file based on symbol table

= phasing error results If symbol value differs between
passes

* Result is a listing file
= errors are listed if they occur

» d symbol, lllegal opcode, branch dist too far, etc.
» symbol table values
» hex object code
School of Computing
U] University of Utah s CS 5780

Syntax

Label Operation Operand Comment
PORTA equ $0000 ; Assembly time constant
Inp ldaa PORTA ; Read data from PORTA

School of Computing

University of Utah 6 CS 5780

U)

Syntax

* Baslc model

Label Operation Operand Comment
PORTA equ $0000 ; Assembly time constant
Inp ldaa PORTA ; Read data from PORTA

¢ First character is important
= white space 2 no label
= * or ; 9 comment line
= character, .7, or « ¥ 2 label
» case senslitive
. of digits, n, wgn, « 3
. a label and stick to It
¢ Labels (optional : which Is Ignored)
= deflne only once except when deflned by set
value is an address of next instruction
unless deflned by equ or set

School of Computing

Unlversity of Utah 7 CS 5780

V)

More Syntax

Operations must be proceeded by at least one white space
character, and they are case-insensitive (nop, NOP, NoP).

Operations can be an opcode or assembler directive
(pseudo-op).
Operand must be proceeded by white space.

Operands must not contain any white space unless the
following comment begins with a semicolon.

Operands are composed of symbols or expressions.

School of Computing

Unlversity of Utah 8 CS 5780

V)

Page 2

Operand Types

Operand Format Example

no operand INH clra

<expression> IMM ldaa #4
<expression> DIR,EXT,REL ldaa 4
<expression > ,idx indexed (IND) ldaa 4,x
<expr>,#<expr> bit set or clear bset 4,#$01

bit test & branch
bit test & branch

<expr>,#<expr>,< expr >
<expr>,idx,#<expr>,< expr >

brset 4,#3$01,foo
brset 4,x,#$01,foo

<expression>,idx+ IND, post incr ldaa 4,x+
<expression > idx- IND, post decr ldaa 4,x-
<expression>,+idx IND, pre incr ldaa 4,+x
<expression>-idx IND, pre decr ldaa 4,-x
acc,idx accum offset IND ldaa A,x

[<expression>,idx] IND indirect ldaa [4,x]
[D,idx] RegD IND indirect 1daa [D,x]

School of Computin
W) university of Utah ° Cs 5780

Indexed Addressing Mode

Uses a fixed signed offset with a 16-bit register: X, Y, SP, or
PC.

Offset can be 5-bits, 9-bits, or 16-bits.
Example (5-bit):

Obj code Op Operand Comment
$6A5C staa -4,Y ; [Y-4] = RegA
RAM EEPROM
v[$0823 | $081E $F800
$081B 556 $F801[S6A
SR A=t Sraos[aer staa -4 ¥
$0821 $F803

School of Computing
University of Utah

U)

10

CS 5780

Building the Object Code

staa -4,Y — $6A5C
First byte is $6A - Op code (pg. 254)
Second byte is formatted as %rrOnnnnn (pg. 33).
rr is %01 for register Y.
nnnnn is %11100 for -4.
%0101 1100 — $5C.

Information is found in the CPU12 Reference Manual
(CPU12RM.pdf).

School of Computing "
University of Utah

V)

CS 5780

Auto Pre/Post Dec/inc Indexed Mode

Can be used with the X, Y, and SP registers, but not PC.

The register used is incremented /decremented by the offset
value (1 to 8) either before (pre) or after (post) the memory
access.

In these examples assume that RegY=2345:

Op Operand Comment

staa 1,Y+ ;Store RegA at 2345, then Reg¥=2346
staa 4,Y- ;Store RegA at 2345, then Reg¥=2341
staa 4,+Y ;Reg¥=2349, then store RegA at 2349
staa 1,-Y ;RegY=2344, then store RegA at 2344

Why not the PC register?

School of Computing
University of Utah

V)

12 CS 5780

Page 3

Building the Object Code

staa 1,X+ — $6A30
First byte is $6A - Op code (pg. 254)
Second byte is formatted as %rripnnnn (pg. 33).
rr is %00 for register X.
nnnn is %0000 for 1.
p is %1 for post.
%0011 0000 — $30.
Information is found in the CPU12 Reference Manual
(CPU12RM.pdf).

School of Computing

University of Utah CS 5780

V)

Accumulator Offset Indexed

Uses two registers, offset is in A, B, or D, while index is in X,
Y, SP, or PC.

Examples:

Op Operand Comment

ldab #4

1dy #2345

staa B,Y ;Store value in RegA at 2349

School of Computing

University of Utah 14

CS 5780

U)

Indexed Indirect Mode

Adds 16-bit offset to 16-bit register (X,Y,SP, or PC) to
compute address in which to fetch another address.
This second address is used by the load or store.

Examples:
Op Operand Comment
ldy #$2345
staa [-4,Y] ;Fetch 16-bit address from $2341,
;store $56 at $1234
1233
24 56
al 56 4 1235
v[ws]
2340
2341 | 12
2342 34

School of Computing

Unlversity of Utah CS 5780

V)

Accumulator D Offset Indexed Indirect

Offset is in D and index is in another 16-bit register.
Computed address is used to fetch another address from

memory.
Load or store uses the second address.
Examples:
Op Operand Comment
ldd #4
1dy #$2341
stx [D,Y] ;Store value in RegX at $1234
D| 0004 1233
=
x[s678] 1235 78
y[2341
_—
D+Y=2345 2345[12
2346 [34

School of Computing

University of Utah 16

CS 5780

V)

Page 4

Load Effective Address

Used with IND addressing modes.
Calculate the effective address and store it in the specified
register: X, Y, or SP.
CC bits are not affected.
Example:
leas -4,SP ;SP -= 4 — $1B9C
$1B is leas op code (first byte).
Second byte is %rrOnnnnn.
%10 is the rr code for SP.
%1 1100 is -4.

LEAS - load effective address into SP

!DJ School of Computing

University of Utah 17 CS 5780

Load and Store Instructions

* Register €2 Memory moves
= load instructions: Idaa, Idab, idd, Ids, Idx, idy
» modes are IMM, DIR, EXT, IND
= store instructions: staa, stab, std, sts, stx, sty
» modes are DIR, EXT, IND
= CC N & Z bits updated b d
= Examples

on d value

Op Operand Comment

ldaa #$FF IMM
staa $25 DIR
ldab $0025 EXT
std $05,X IND
1dd $C025 EXT
W - ce o7

M2M Move Instructions

* Move a value from one memory location to another
= does not affect the CC register bits

Move an 8-bit constant into memory:
[addr]=w
Move an 8-bit value memory to memory:
movb addril,addr2 [addr2]=[addri]
Move a 16-bit constant into memory:

movw #W,addr {addr}=W

Move a 16-bit value memory to memory:
movw addrl,addr2 {addr2}={addri}

movb #w,addr

mj School of Computing

Unlversity of Utah 19 CS 5780

Clear/Set Instructions

Used to initialize memory (clr), accumulators (clra,clrb),
or bits in the CC (clc, cli, clv).

clr addressing modes are: EXT, IND.

clra, clrb, clc, cli, clv are INH.

Examples:
Op Operand Comment
clra INH
clr $0025 EXT

The carry (C), interrupt mask (1), and overflow (V) bits in the
CC can also be set (sec, sei, sev).

mj School of Computing

Unlversity of Utah 20 CS 5780

Page 5

Exchange and Transfer Instructions

* Transfer (all INH)
= tab: A B (also tba)
= tap: A CC (also tpa)
= tsx, txs, tsy, tys, etc. see manual for full set
* Exchange (also INH)
= double move
» xgdx, xgdy

Add and Subtract

Registers: aba, abx, aby, sba (all INH).

With carry to memory: adca, adcb, sbca, sbcb.

w/o carry to memory: adda, addb, addd, suba, subb, subd.
Addressing modes are: IMM, DIR, EXT, IND.

Examples: 16-bit addition using only A

Op Operand Comment

ldaa $25 load least sig byte
adda $35 add data at $35 to A
staa $45 store least sig byte
ldaa $24 load most sig byte
adca $34 add data at $34 to A
staa $44 store most sig byte

W) Soheorn o v = cs 5780 W) Sohecran o v = cs 5780
Compare Misc. Arithmetic Instructions

Perform a subtraction to update the CC, but do not alter data
register values.

Typically used just before a branch instruction.
Compare registers: cba (INH).

Compare to memory: cmpa, cmpb, cpd, cpx, cpy.
Addressing modes: IMM, DIR, EXT, IND

Example: comparing with a known set point

Obj code Op Operand Comment
$8650 ldaa #$50 load set point into A
$B11031 cmpa $1031 compare A to memory

If Z flag is 1 then the contents of $1031 equals $50.

mj School of Computing 23 CS 5780

University of Utah

* Dec/inc, Negate, Test

dec, deca, decb, des, dex, dey - decrement
inc, inca, incb, ins, inx, iny - increment
neg, nega, negb - two's complement.

tst, tsta, tstb - subtracts O from memory or register and
sets Z and N flags in the CC.

mj School of Computing 24 CS 5780

University of Utah

Page 6

Multiply

Multiplies two unsigned 8-bit values in A and B to produce a
16-bit unsigned product stored in D (i.e., A x B — D).

Register D

I Register A l % [Register B I = I Register A [Register B I
8 bits 8 bits 16 bits
Example:
Op Operand Comment
ldaa #$FF (255) MM
ldab #$14 (20) IMM
mul INH

At the end, accumulator D contains $13EC (5100).
$FF * $FF = $FEO1

!”J School of Computing

University of Utah 25 CS 5780

Integer Divide

Use D register for the dividend and X register for the divisor.
Resultant placed in X register and remainder in D register.

idiv performs integer division.

chislchI / [RegislchI = Ichisler Xl

Remainder =

Example:
Obj code Op Operand Comment
$CCFFFF 1dd #$FFFF (65535) After idiv executes
$CE2710 1dx #$2710 (10000) X contains $0006
$02 idiv D contains $159F (5535)

!DJ School of Computing

University of Utah 26 CS 5780

Fractional Divide

fdiv performs fractional division resulting in binary weighted
fraction between 0 and 0.999998 (i.e., (65536 x D)/ X — X).

Register D 0 | / |chislerX| = ’chistchl

Remainder =

Numerator must be less than denominator or overflow occurs.

Next 16-bits of the fraction can be obtained by reloading the
denominator and doing fdiv again.

mj School of Computing 27 CS 5780

University of Utah

fdiv Example

Op Operand
1dd #1

ldx #3
fdiv

Result: X: $5555 and D: $0001.

Assuming decimal point is to the left of the MSB $5555 =
0.333328247...

Another fdiv refines the value to: 0.33333333325572

mj School of Computing 28 CS 5780

University of Utah

Page 7

Extended Precision Arithmetic

emul and emuls perform 16 x 16 unsigned and signed
multiplication.

| RegY |><| Reg D I=| RegyY I Reg D ‘
16 bits 16 bits 32 bits

ediv and edivs perform 32 x 16 unsigned and signed division.

| RegY | RegD |+ RegX |=| Regy |
32 bits 16 bits 16 bits

Remainder

!”J School of Computing

University of Utah 20 CS 5780

MAC

emacs performs a 16 x 16 signed multiply followed by a 32-bit
signed addition.

Uses indexed addressing to access two 16-bit inputs and
extended addressing to access the 32-bit sum.

<U> = <U>+{X}={Y}

!DJ School of Computing

University of Utah 30 CS 5780

Shifts

Logical shift right (1sr, 1sra, 1srb, 1srd) shifts 0's into
MSB.

N ESTTEE =y

Arithmetic shift right (asr, asra, asrb) retains MSB value.

w PR FF 43

Logical shift left (1s1, 1sla, 1s1b, 1s1d) and arithmetic shift
left (asl, asla, aslb, asld) are equivalent (same op code).

sus cf F X FFFFFFo

mj School of Computing 31 CS 5780

University of Utah

Rotate

Rotate right (ror, rora, rorb) put carry bit into the MSB.
Rotate left (rol, rola, rolb) put carry bit into the LSB.

LSS
EEEE R R

ROR

ROL

mj School of Computing 32 CS 5780

University of Utah

Page 8

Bitwise Logical Operations

AND - anda, andb (IMM, DIR, EXT, IND).
Inclusive OR - oraa, orab (IMM, DIR, EXT, IND).
Exclusive OR - eora, eorb (IMM, DIR, EXT, IND).
1's complement - com, coma, comb.

Example: masking unwanted bits

Obj code Op Operand Comment
$8634 ldaa #$34 %00110100
$840F anda #$0F %00001111

Result in A is %00000100

!DJ School of Computing

University of Utah 33 CS 5780

Bit Test, Set, & Clear

bita and bitb instructions perform an AND operation and
update N and Z flags of the CC w/o altering the operand.
bclr and bset instructions are used to clear or set bit(s) in a
given memory location.

bclr addr, mm

bset addr, mm
where addr is a memory location specified using DIR, EXT, or
IND addressing mode and mm is a mask byte.

!DJ School of Computing

University of Utah 34 CS 5780

Stack Instructions

Stack pointer (RegSP) defines the top of the stack.
Should be loaded with a RAM memory address early in any
assembly language program.

Push and pull instructions put data onto and take data off the
stack.

psha, pshb, pshx, pshy, pula, pulb, pulx, puly (all INH)

REMEMBER: stack grows down (lower address value)

mj School of Computing

Unlversity of Utah 35 CS 5780

Subroutine Linkage (Manual)

Op Comment
Callee saves state to stack

pshy INH Restores state on return
pshx INH
pshb INH
psha INH
tpa INH
psha INH
body of subroutine
pula INH
tap INH
pula INH
pulb INH
pulx INH
puly INH

mj School of Computing

Unlversity of Utah 36 CS 5780

Page 9

Subroutine Call and Return

Jump, Branch, Branch Always

bsr - branch to subroutine using REL addressing.

jsr - jumps to subroutine using DIR, EXT, or IND addressing.

On either bsr or jsr, PC is automatically pushed onto the
stack (least significant byte first).

rts - return from subroutine, PC automatically pulled off the
stack and jumps to that location.

bsr offset is 8-bit signed value

jmp and bra instructions are unconditional.

bra uses relative addressing (REL) so it can only be used to
jump —128 or 127 instructions.

jmp can use EXT and IND addressing so it can be used to
jump anywhere in the 64K address space.

bra $ stops progress of CPU, but it continues to execute this
instruction.

School of Computing

University of Utah CS 5780

V)

37

School of Computing

University of Utah CS 5780

U)

38

Single Condition Branches

Example: Equality Tests

bece - branch if carry clear (i.e., C =0).

bes - branch if carry set (i.e., C =1).

bne - branch if not equal to zero (i.e., Z =0).
beq - branch if equal to zero (i.e., Z =1).
bpl - branch if positive or zero (i.e., N = 0).
bmi - branch if negative (i.e., N =1).

bvc - branch if overflow clear (i.e., V =0).

vV =1).

brn - branch never narato say what this is good for

bvs - branch if overflow set (i.e.,

C Code Assembly Code
if (G2==G1) { ldaa G2
isEqual(); cmpa G1
} bne next ;skip if not equal
jsr isEqual ;G2==G1
next
if (G2!=G1) { ldaa G2
isNotEqual(); cmpa G1
} beq next ;skip if equal
jsr isNotEqual ;G2!=G1
next

School of Computing

University of Utah 3

CS 5780

V)

School of Computing

Unlversity of Utah CS 5780

40

V)

Page 10

Unsigned Number Branches

These branches usually follow cba, cmp(A,B,D), cp(X,Y),
sba, sub(A,B,D) instructions.

bhi - branch if higher "> (i.e., C+Z =0).

bhs - branch if higher or same '>" (i.e., C =0).
blo - branch if lower '<’ (i.e., C =1).

bls - branch if lower or same '<' (i.e., C+Z =1).

School of Computing
U] University of Utah “ CS 5780

Signed Number Branches

These branches usually follow cba, cmp(A,B,D), cp(X,Y),
sba, sub(A,B,D) instructions.

bgt - branch if greater '>' (i.e., Z+ (N & V) =0).

bge - branch if greater or equal '>' (i.e., N& V =0).
blt - branch if less '<' (i.e., N V =1).

ble - branch if less or equal '<’ (ie., Z+ (N & V) =1).

!DJ School of Computing

University of Utah 42 CS 5780

Example: Unsigned Tests

C Code Assembly Code

unsigned int G1; ldaa G2

unsigned int G2; cmpa G1

if (G2 > G1) { bls next ;skip if G2<=G1
isGreater(); jsr isGreater ;G2>G1

} next

unsigned int G1; ldaa G2

unsigned int G2; cmpa G1

if (G2 > G1) { blo next ;skip if G2<G1
isGreaterEqQ) ; jsr 1isGreaterEq ;G2>=G1

} next

School of Computing
mj Unlversity of Utah a3 CS 5780

Miscellaneous But Useful

nop — no operation, creates a 2-cycle delay.
swi — trigger a software interrupt.

rti — called at the end of an interrupt service routine to
restore the CPU registers.

wai — puts CPU into standby mode waiting for an interrupt;
CPU clock is stopped but other MCU clocks can continue to
run.

stop — stop all clocks to save power; start on RESET,

XIRQ, or unmasked IRQ: RAM, I/O space, and registers are
preserved.

mj School of Computing

Unlversity of Utah a4 CS 5780

Page 11

Assembler Pseudo-Ops

Set the location to put the following object code (org, .org):
org <expression>
Equate symbol to a value (equ, =):
<label> equ <expression>
Redefinable equate symbol to a value (set):
<label> set <expression>
Reserve multiple bytes (rmb, ds, ds.b, .blkb):
<label> rmb <expression>
Reserve multiple words (ds.w, .blkw):
<label> ds.w <expression>
Reserve multiple 32-bit words (ds.1, .blkl):
<label> ds.l <expression>

School of Computing
University of Utah

V)

as

CS 5780

More Pseudo-Ops

Form constant byte (fcb, dc.b, db, .byte):
<label> fcb <expression>
Form double byte (£db, dc.w, dw, .word):
<label> fdb <expression>
Define 32-bit constant (dc.1, d1, .long):
<label> fgb <expression>
Form constant character string (fcc):
hello fcc ‘‘Hello World’’,0

School of Computing
University of Utah

U)

a6

CS 5780

Concluding Remarks

* Boring and still Incomplete

= hopefully you have background to read understand the ISA
& assembler

» read the d for the whole scoop
* Addressing modes are the key to reading and writing
assembly

= you’ll tend to read it more than write 2 debug

= write usually only happens when you need low-level HW
control

= condition codes and
» ignore and bugs appear
* Extensive math support
= for operations wider than 8 bits
* Assembly coding Is hard
= easy to make baslc and serlous mistakes

h RN h

q are Important

» save & t state, tched stack fi , CC P
» Pandora’s box In a way
School of Computing
mj Unlversity of Utah a7 CS 5780

Page 12

