
Page 1

1 CS 5780
School of Computing
University of Utah

Introduction to Embedded Systems

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• some logistics nagging

• assembly language programming

2 CS 5780
School of Computing
University of Utah

Some Nagging

•  Apparently necessary
  several students do not yet have lab partners or lab sections

 identified
»  lab section is your choice but you have to let me know via email

»  note this is due TODAY

  registered but not on email list
»  Min, Najar, Sreedharan, Tateoka

  team identified but no lab section
»  Bailey & McDougall, Tomer & Oneida

  no team or lab section
»  Behera, Fallatah, Jones, Lezin, Maheshwari, Martin, Min

»  Morley, Najar, Rolfe, Sreedharan, Tateoka, Wiser, Worley

•  If your name appears above - see me after class
  note I may have some book-keeping errors

»  but we have to get this sorted out

»  lab section assignments will appear on the web today
•  if you spot an error email teach-cs5780 ASAP

Page 2

3 CS 5780
School of Computing
University of Utah

Why Assembly?

•  Taken ECE/CS 4400?
  then you know

•  Typically you’ll write your lab codes in C
  if everything works

»  then no need for assembly/object code knowledge

  if it doesn’t work
»  examine assembly to see what the compiler did to your code

»  and some things are just easier in assembly
•  direct control of machine resources

•  you can embed assembly code in your C code files

  works in simulator but not on the processor
»  processor only knows bits object code

•  Hence
  you’ll need to be familiar with assembly and object code

 representations
»  you’ll probably do this in JIT mode

4 CS 5780
School of Computing
University of Utah

Assembly Language Development Process

Page 3

5 CS 5780
School of Computing
University of Utah

6812 Assembly Language

•  Details are in references on the web page
  too boring to enumerate in class

  so we’ll cover the highlights

•  Addresses and symbols
  assembler usually is a 2-pass process

»  1: build the symbol table:values map
•  explicit value

–  PTT equ $2040
•  implicit value: label a particular location in the code

»  2: create object file based on symbol table

  phasing error results if symbol value differs between
 passes

•  Result is a listing file
  errors are listed if they occur

»  undefined symbol, illegal opcode, branch distance too far, etc.

»  symbol table values

»  hex object code

6 CS 5780
School of Computing
University of Utah

Syntax

Page 4

7 CS 5780
School of Computing
University of Utah

Syntax

•  Basic model

•  First character is important
  white space no label

  * or ; comment line

  character, “.”, or “_” label
»  case sensitive

•  composed of digits, characters, “.”, “$”, “_”

•  advice: develop a label convention and stick to it

•  Labels (optional : which is ignored)
  define only once except when defined by set
value is an address of next instruction

unless defined by equ or set

8 CS 5780
School of Computing
University of Utah

More Syntax

Page 5

9 CS 5780
School of Computing
University of Utah

Operand Types

10 CS 5780
School of Computing
University of Utah

Indexed Addressing Mode

Page 6

11 CS 5780
School of Computing
University of Utah

Building the Object Code

12 CS 5780
School of Computing
University of Utah

Auto Pre/Post Dec/Inc Indexed Mode

Why not the PC register?

Page 7

13 CS 5780
School of Computing
University of Utah

Building the Object Code

14 CS 5780
School of Computing
University of Utah

Accumulator Offset Indexed

Page 8

15 CS 5780
School of Computing
University of Utah

Indexed Indirect Mode

16 CS 5780
School of Computing
University of Utah

Accumulator D Offset Indexed Indirect

Page 9

17 CS 5780
School of Computing
University of Utah

Load Effective Address

LEAS – load effective address into SP

18 CS 5780
School of Computing
University of Utah

Load and Store Instructions

•  Register Memory moves
  load instructions: ldaa, ldab, ldd, lds, ldx, ldy

»  modes are IMM, DIR, EXT, IND

  store instructions: staa, stab, std, sts, stx, sty
»  modes are DIR, EXT, IND

  CC N & Z bits updated based on moved value
  Examples

Page 10

19 CS 5780
School of Computing
University of Utah

M2M Move Instructions

•  Move a value from one memory location to another
  does not affect the CC register bits

20 CS 5780
School of Computing
University of Utah

Clear/Set Instructions

Page 11

21 CS 5780
School of Computing
University of Utah

Exchange and Transfer Instructions

•  Transfer (all INH)
  tab: A B (also tba)

  tap: A CC (also tpa)
  tsx, txs, tsy, tys, etc. see manual for full set

•  Exchange (also INH)
  double move

»  xgdx, xgdy

22 CS 5780
School of Computing
University of Utah

Add and Subtract

Page 12

23 CS 5780
School of Computing
University of Utah

Compare

24 CS 5780
School of Computing
University of Utah

Misc. Arithmetic Instructions

•  Dec/Inc, Negate, Test

Page 13

25 CS 5780
School of Computing
University of Utah

Multiply

26 CS 5780
School of Computing
University of Utah

Integer Divide

Page 14

27 CS 5780
School of Computing
University of Utah

Fractional Divide

28 CS 5780
School of Computing
University of Utah

fdiv Example

Page 15

29 CS 5780
School of Computing
University of Utah

Extended Precision Arithmetic

30 CS 5780
School of Computing
University of Utah

MAC

Page 16

31 CS 5780
School of Computing
University of Utah

Shifts

32 CS 5780
School of Computing
University of Utah

Rotate

Page 17

33 CS 5780
School of Computing
University of Utah

Bitwise Logical Operations

34 CS 5780
School of Computing
University of Utah

Bit Test, Set, & Clear

Page 18

35 CS 5780
School of Computing
University of Utah

Stack Instructions

REMEMBER: stack grows down (lower address value)

36 CS 5780
School of Computing
University of Utah

Subroutine Linkage (Manual)

Callee saves state to stack
Restores state on return

Page 19

37 CS 5780
School of Computing
University of Utah

Subroutine Call and Return

bsr offset is 8-bit signed value

38 CS 5780
School of Computing
University of Utah

Jump, Branch, Branch Always

Page 20

39 CS 5780
School of Computing
University of Utah

Single Condition Branches

hard to say what this is good for

40 CS 5780
School of Computing
University of Utah

Example: Equality Tests

Page 21

41 CS 5780
School of Computing
University of Utah

Unsigned Number Branches

42 CS 5780
School of Computing
University of Utah

Signed Number Branches

Page 22

43 CS 5780
School of Computing
University of Utah

Example: Unsigned Tests

44 CS 5780
School of Computing
University of Utah

Miscellaneous But Useful

Page 23

45 CS 5780
School of Computing
University of Utah

Assembler Pseudo-Ops

46 CS 5780
School of Computing
University of Utah

More Pseudo-Ops

Page 24

47 CS 5780
School of Computing
University of Utah

Concluding Remarks

•  Boring and still incomplete
  hopefully you have background to read understand the ISA

 & assembler
»  read the reference documentation for the whole scoop

•  Addressing modes are the key to reading and writing
 assembly
  you’ll tend to read it more than write debug

  write usually only happens when you need low-level HW
 control

  condition codes and subsequent branches are important
»  ignore and bugs appear

•  Extensive math support
  for operations wider than 8 bits

•  Assembly coding is hard
  easy to make basic and serious mistakes

»  save & restore state, mis-matched stack frames, CC screw-ups

»  Pandora’s box in a way

