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1 CS 5780 
School of Computing 
University of Utah 

Introduction to Embedded Systems 

CS/ECE 6780/5780 

Al Davis 

 Today’s topics: 

• some logistics nagging 

• assembly language programming 
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Some Nagging 

•  Apparently necessary 
  several students do not yet have lab partners or lab sections

 identified 
»  lab section is your choice but you have to let me know via email 

»  note this is due TODAY 

  registered but not on email list 
»  Min, Najar, Sreedharan, Tateoka 

  team identified but no lab section 
»  Bailey & McDougall, Tomer & Oneida 

  no team or lab section 
»  Behera, Fallatah, Jones, Lezin, Maheshwari, Martin, Min 

»  Morley, Najar, Rolfe, Sreedharan, Tateoka, Wiser, Worley 

•  If your name appears above - see me after class 
  note I may have some book-keeping errors 

»  but we have to get this sorted out 

»  lab section assignments will appear on the web today 
•  if you spot an error email teach-cs5780 ASAP 
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Why Assembly? 

•  Taken ECE/CS 4400? 
  then you know 

•  Typically you’ll write your lab codes in C 
  if everything works  

»  then no need for assembly/object code knowledge 

  if it doesn’t work 
»  examine assembly to see what the compiler did to your code 

»  and some things are just easier in assembly 
•  direct control of machine resources 

•  you can embed assembly code in your C code files 

  works in simulator but not on the processor 
»  processor only knows bits  object code 

•  Hence  
  you’ll need to be familiar with assembly and object code

 representations 
»  you’ll probably do this in JIT mode 
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Assembly Language Development Process 
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6812 Assembly Language 

•  Details are in references on the web page 
  too boring to enumerate in class 

  so we’ll cover the highlights 

•  Addresses and symbols 
  assembler usually is a 2-pass process 

»  1: build the symbol table:values map 
•  explicit value   

–  PTT equ $2040
•  implicit value: label a particular location in the code 

»  2: create object file based on symbol table 

  phasing error results if symbol value differs between
 passes 

•  Result is a listing file 
  errors are listed if they occur 

»  undefined symbol, illegal opcode, branch distance too far, etc. 

»  symbol table values 

»  hex object code 
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Syntax 
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Syntax 

•  Basic model 

•  First character is important 
  white space  no label 

  * or ;  comment line 

  character, “.”, or “_”  label 
»  case sensitive 

•  composed of digits, characters, “.”, “$”, “_” 

•  advice: develop a label convention and stick to it 

•  Labels (optional : which is ignored) 
  define only once except when defined by set
value is an address of next instruction 

unless defined by equ or set
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More Syntax 
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Operand Types 
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Indexed Addressing Mode 
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Building the Object Code 
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Auto Pre/Post Dec/Inc Indexed Mode 

Why not the PC register? 



Page 7 

13 CS 5780 
School of Computing 
University of Utah 

Building the Object Code 
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Accumulator Offset Indexed 
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Indexed Indirect Mode 

16 CS 5780 
School of Computing 
University of Utah 

Accumulator D Offset Indexed Indirect 
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Load Effective Address 

LEAS – load effective address into SP 
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Load and Store Instructions 

•  Register  Memory moves 
  load instructions: ldaa, ldab, ldd, lds, ldx, ldy 

»  modes are IMM, DIR, EXT, IND 

  store instructions: staa, stab, std, sts, stx, sty 
»  modes are DIR, EXT, IND 

  CC N & Z bits updated based on moved value 
  Examples 
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M2M Move Instructions 

•  Move a value from one memory location to another 
  does not affect the CC register bits 
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Clear/Set Instructions 
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Exchange and Transfer Instructions 

•  Transfer (all INH) 
  tab: A B (also tba) 

  tap: A CC (also tpa) 
  tsx, txs, tsy, tys, etc. see manual for full set 

•  Exchange (also INH) 
  double move 

»  xgdx, xgdy 
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Add and Subtract 



Page 12 

23 CS 5780 
School of Computing 
University of Utah 

Compare 
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Misc. Arithmetic Instructions 

•  Dec/Inc, Negate, Test 
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Multiply 
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Integer Divide 
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Fractional Divide 
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fdiv Example 
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Extended Precision Arithmetic 
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MAC 
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Shifts 
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Rotate 
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Bitwise Logical Operations 
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Bit Test, Set, & Clear 
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Stack Instructions 

REMEMBER: stack grows down (lower address value) 
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Subroutine Linkage (Manual) 

Callee saves state to stack 
Restores state on return 



Page 19 

37 CS 5780 
School of Computing 
University of Utah 

Subroutine Call and Return 

bsr offset is 8-bit signed value 
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Jump, Branch, Branch Always 
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Single Condition Branches 

hard to say what this is good for 
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Example: Equality Tests 
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Unsigned Number Branches 
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Signed Number Branches 
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Example: Unsigned Tests 

44 CS 5780 
School of Computing 
University of Utah 

Miscellaneous But Useful 
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Assembler Pseudo-Ops 
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More Pseudo-Ops 
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Concluding Remarks 

•  Boring and still incomplete 
  hopefully you have background to read understand the ISA

 & assembler 
»  read the reference documentation for the whole scoop 

•  Addressing modes are the key to reading and writing
 assembly 
  you’ll tend to read it more than write  debug 

  write usually only happens when you need low-level HW
 control 

  condition codes and subsequent branches are important 
»  ignore and bugs appear 

•  Extensive math support 
  for operations wider than 8 bits 

•  Assembly coding is hard 
  easy to make basic and serious mistakes 

»  save & restore state, mis-matched stack frames, CC screw-ups 

»  Pandora’s box in a way 


