
Page 1

1 CS 5780
School of Computing
University of Utah

Introduction to Embedded Systems

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• some logistics updates

• a brief view of processor history

• 6812 Architecture

• introduction to Lab1

2 CS 5780
School of Computing
University of Utah

Logistics

•  Acronyms
  it’s a disease and I have it

»  you will too if you stay in the sport

  don’t hesitate to ask what the heck I’m talking about
»  e.g. DMA question after class last Thursday

»  lectures are intended to be interactive – don’t be shy

•  You should be on the mailing list ALREADY
  if you aren’t get it done TODAY or drop the class

»  it’s your choice

•  Teams and lab sections
  should be signed up by Thursday (2 days from now)

  check out your lab kits

  labs will start next week
»  TA’s debugging the lab write up now

•  it will be posted on the web by Thursday
–  so don’t delay – it will be very hard to catch up after a slow start

3 CS 5780
School of Computing
University of Utah

My Records Indicate

•  Just an fyi
  registered but not on the mailing list

»  Min, Najar, Sreedharan, Tateoka, Wiser, Worley

  on mailing list but not registered
»  Behera

•  See me after class and let me know
  if my records are wrong

  and if not what your plans are

•  So far out of a possible 42 students
  26 have teams

»  2 teams haven’t given me a lab section choice yet

»  unteamed so far
•  6780: 3

•  5780: 13

»  might have the odd number problem
•  so get teams formed and let me know if you’re going to drop, etc.

4 CS 5780
School of Computing
University of Utah

Intel 4004 – first single chip computer?

1970 – Burroughs D
machine and an IBM
microProc showed up
around the same time

Page 2

5 CS 5780
School of Computing
University of Utah

Intel 8008 (1972)

6 CS 5780
School of Computing
University of Utah

Intel 8080 (1974)

7 CS 5780
School of Computing
University of Utah

Intel 8086-8088 (1978)

Notice anything different?

8 CS 5780
School of Computing
University of Utah

Intel 286 (1982)

Page 3

9 CS 5780
School of Computing
University of Utah

Intel 386 (1985)

10 CS 5780
School of Computing
University of Utah

Intel486 DX (1989)

11 CS 5780
School of Computing
University of Utah

Intel Pentium (1993)

12 CS 5780
School of Computing
University of Utah

Intel Pentium Pro (1995)

Page 4

13 CS 5780
School of Computing
University of Utah

Intel Pentium II (1997)

14 CS 5780
School of Computing
University of Utah

Intel Pentium III (1999)

15 CS 5780
School of Computing
University of Utah

Intel Pentium 4 (2000)

16 CS 5780
School of Computing
University of Utah

What’s the Point?

•  Never ending progression
  added architectural features

»  simple accumulator machine
•  no such thing as virtual memory

»  add caches

»  add virtual memory cache translation == TLB
•  physical vs. virtual page mapping

•  segmentation also an option

»  dynamic issue

»  pipelining

»  super-scalar

»  multi-threading

»  multiple cores
•  deeper cache hierarchy

•  coherence choices

  added cost and power too
»  not suitable for ES’s (4004 wasn’t a computer – Nehalem isn’t

 an ES choice)

Page 5

17 CS 5780
School of Computing
University of Utah

Enter Microcontrollers

•  2 ways to think about it
  dumbed down microprocessor

  get just what you need
»  and not a bunch of power hungry crap that you don’t

•  Realization circa 1980 that ES’s were necessary
  and microprocessors were more than you needed

»  ES’s don’t need the same generality

  Intel produces the 8051 microcontroller

  Motorola: 6805, 6808, 6811, 6812
»  1999 – they shipped their 2B’th MC68HC05

»  2004 – spins off microcontroller division
•  call it Freescale Semiconductor

•  still owned by Motorola but operates as an autonomous business
 unit

–  well sort of

18 CS 5780
School of Computing
University of Utah

6812 Architecture

•  Target
  16-bit data path

  low-power low voltage but keep bus speed high
  single wire background debug

»  allow in-circuit “minimally intrusive” program and debug

  support for level language programming
»  in C?? What a hoot?

•  Lots of variants
  biggest difference is the I/O

»  key aspect of ES controllers
•  support for multiple standard interfaces*

  hence pin count varies from ~60 to ~120 pins

  amount of memory varies

  why?
»  target the various market segments we talked about last time

•  automotive, medical, ….

19 CS 5780
School of Computing
University of Utah

Generic 6812

•  Registers
  2 8-bit accumulators (called A&B)

»  combined to form a 16-bit accumulator (D)

»  2 16-bit index registers (X, Y)

»  8-bit condition code register

»  stack pointer and PC

  8-bit condition code register

  ISA
»  powerful bit manipulation instructions

•  not typically found in mainstream µP’s

»  arithmetic instructions
•  16 bit +/-

•  32 x 16 signed/unsigned divide (32? how?)

•  16 x 16 fractional divide

•  16 x 16 multiply

•  32 + (16 x 16) MAC

»  stack manipulation
•  stack pointer points to top element and grows downward

20 CS 5780
School of Computing
University of Utah

Registers

Page 6

21 CS 5780
School of Computing
University of Utah

Condition Code Register

Stores critical state – important to understand how each instruction
may influence this state.

22 CS 5780
School of Computing
University of Utah

Address Map for CSM12C32

23 CS 5780
School of Computing
University of Utah

External I/O Ports

24 CS 5780
School of Computing
University of Utah

CSM12C32 Block Diagram

Page 7

25 CS 5780
School of Computing
University of Utah

Numbers and Addresses

•  Byte-addressable
  typical tradition (some of which is stupid in mainstream)

•  Numbers
  typical 2’s complement for signed

»  +/- uses same HW, divide, mult, shift are different

»  everybody know this stuff?

  unsigned gives greater range – assumed positive

  byte = 2 hex digits in C
»  10110101 = $B5 = C’s version 0xB5

»  also can represent a 7-bit ASCII code

  programmer must keep track of signed vs. unsigned

26 CS 5780
School of Computing
University of Utah

16-bit Values & Lilliputian Wars

Search “Lilliputian Wars” for an extended discussion of this problem.

27 CS 5780
School of Computing
University of Utah

Fixed-Point Numbers

•  Often used in ES due to memory efficiency
  FxPnum = xxx.yyyy (implicit decimal point)

»  base can be decimal, binary, or whatever

»  note the HW does binary
•  if you want something else it will have to happen in SW

–  translation back and forth will be required

  problem
»  you bet

»  obscure code is not your friend

»  implied decimal point and base
•  often appears in the code as a comment

•  YIKES

28 CS 5780
School of Computing
University of Utah

Precision, Resolution, and Range

•  Precision - # of distinguishable values

•  Resolution – smallest representable difference
•  Range – representable set between min and max values

•  Example
  10-bit ADC with a range of 0 to +5V

»  precision of 210 = 1024 values
•  note binary decade hack (useful if you don’t already know it)

•  10 bits = Kilo

•  20 bits = Mega

•  30 bits = Giga

•  40 bits = Tera

•  50 bits = Peta

•  60 bits = Exa

»  resolution of 5V/1024 = ~5mV

»  representation
•  16-bit fixed point number

•  with base of 0.001V

Page 8

29 CS 5780
School of Computing
University of Utah

Overflow and Drop-Out

•  Overflow
  calculated value is outside the range

•  Drop-out
  intermediate result can’t be represented

•  Example
  M = (53*N)/100 vs. M = 53*(N/100)

»  given fixed number of bits normal arithmetic rules change
•  e.g. order matters

»  promotion to a higher precision avoids overflow

»  dividing last avoids drop-out

30 CS 5780
School of Computing
University of Utah

Notation

31 CS 5780
School of Computing
University of Utah

Assembly Language

32 CS 5780
School of Computing
University of Utah

Addressing Modes

Page 9

33 CS 5780
School of Computing
University of Utah

Inherent Mode

34 CS 5780
School of Computing
University of Utah

Immediate Mode

35 CS 5780
School of Computing
University of Utah

Direct Page Mode

36 CS 5780
School of Computing
University of Utah

Extended Addressing Mode

Page 10

37 CS 5780
School of Computing
University of Utah

PC Relative Addressing Mode

38 CS 5780
School of Computing
University of Utah

Lab1Example.c Requirements

•  SW1 and PB2 light up LED1 (MCU board) and LED1 and
 LED2 (project board) when pressed

•  SW2 and PB1 light up LED2 (MCU) and LED3/LED4
 (project) when pressed
  MCU board switches and LEDs

39 CS 5780
School of Computing
University of Utah

Project Board

40 CS 5780
School of Computing
University of Utah

MCU Port Mappings

Page 11

41 CS 5780
School of Computing
University of Utah

MCU Port Configurations

42 CS 5780
School of Computing
University of Utah

Lab1Example.c Code

43 CS 5780
School of Computing
University of Utah

Alternatively

44 CS 5780
School of Computing
University of Utah

Lab1

•  Test your kit
  same test used at end of term to demo to the TA that your

 kit works
»  if you break it in between you’re liable

»  note ESD precautions

  you’ll load predefined code
»  push buttons and switches and make sure the proper LED’s do

 the right thing

•  Write a simple piece of C code
  4 bit Gray counter

»  4 LED’s indicate value

»  push button or switch to increment

»  typical wrap-around

»  anybody not know Gray code?

Page 12

45 CS 5780
School of Computing
University of Utah

Hamming Distance 1

•  Gray code
  successive values achieved by a single bit flip

•  Karnaugh maps are your friend

00 01 11

11

10

00

01

10

1 0 2 3

6 7 5 4

9 8 10 11

14 15 13 12

N – abcd

recursive reflection
0
1
flip and add new bit
00
01
11
10
repeat as needed

ab cd

46 CS 5780
School of Computing
University of Utah

MCU Programming Summary

•  Basic programming issues
  simple or no data structures

  simple control structures (no objects, indirect jumps, …)
  lots of bit-twiddling

•  C and assembly are almost the same
  good in a way – transparent compilation

»  there are some gotcha’s to be covered later

•  Key skills
  debugging w/ very little feedback

  low level details must be a focus

  getting the right info from diverse documentation

