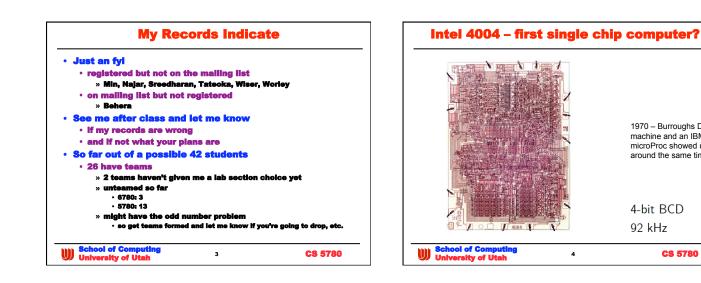
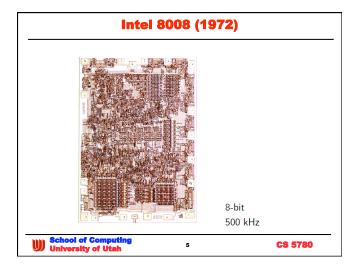
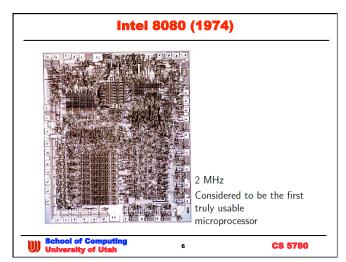


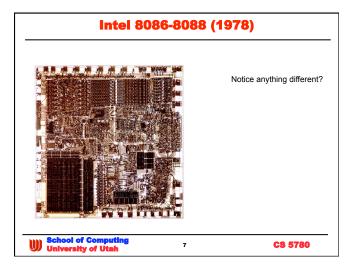
1970 – Burroughs D

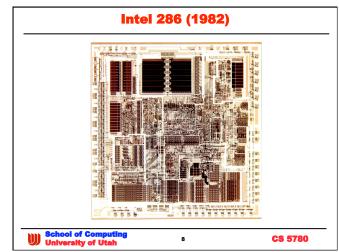
machine and an IBM

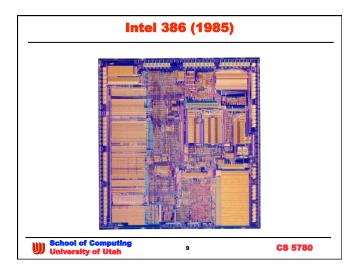

microProc showed up

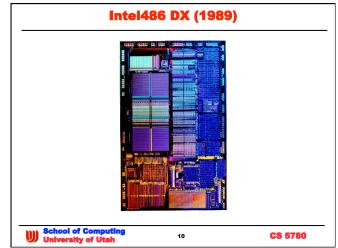

around the same time

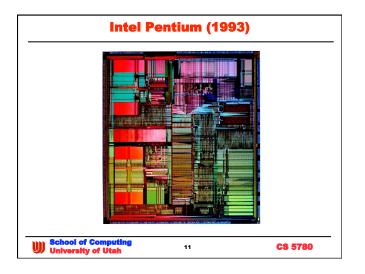

CS 5780

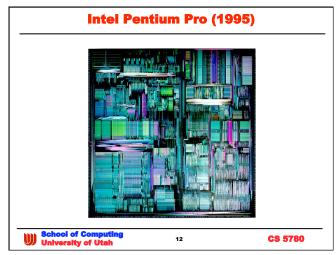

4-bit BCD

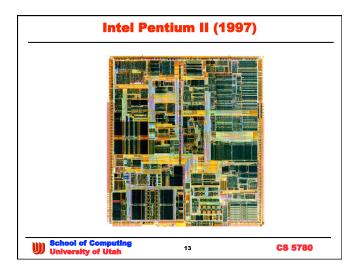

92 kHz

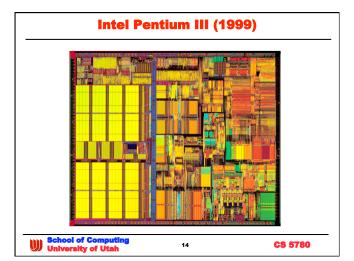


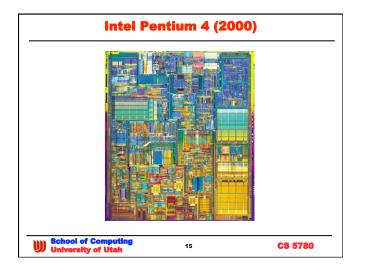


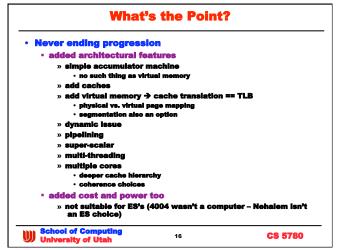


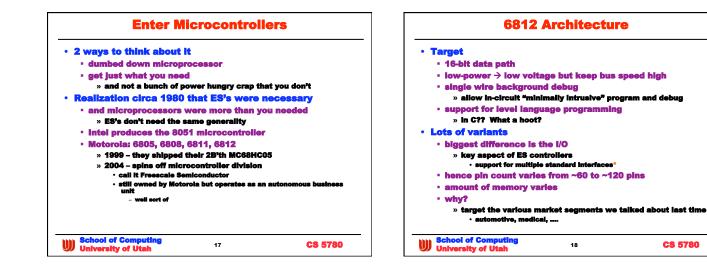


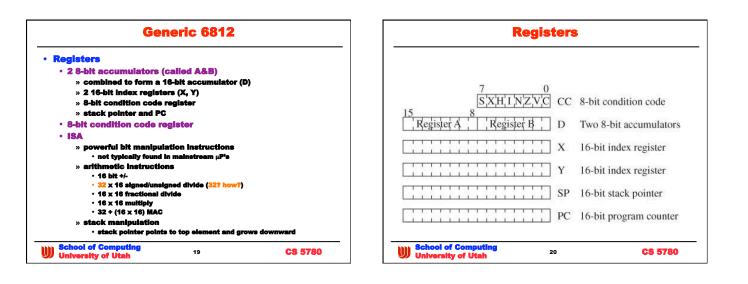


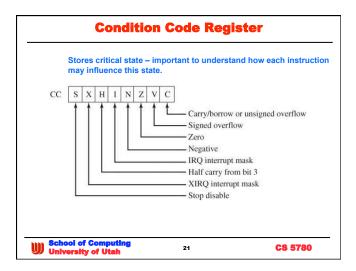


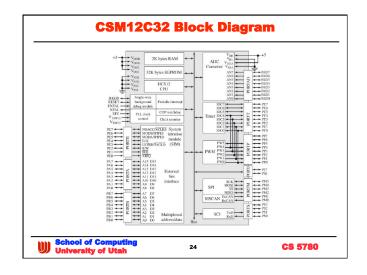


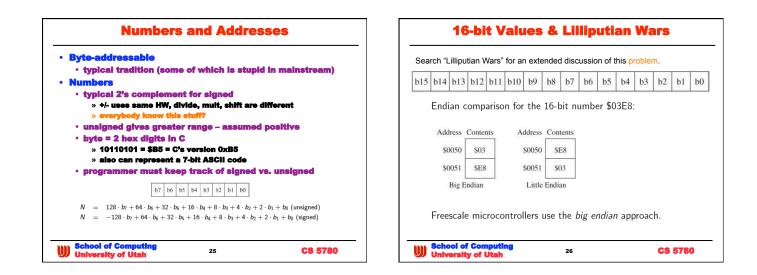


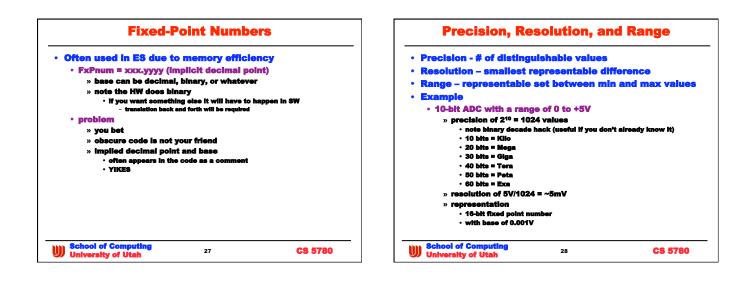


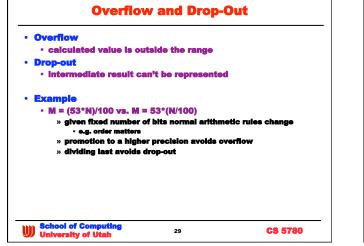


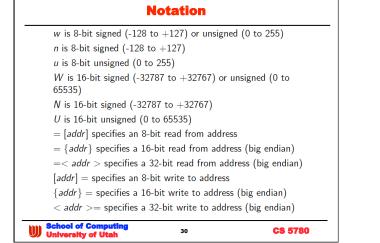


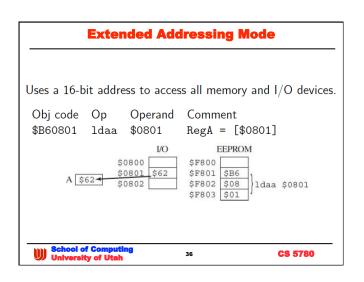



CS 5780




Address (hex)	Size	Device	Contents
\$0000 to \$03FF	1K	I/O	
\$3800 to \$3FFF	2K	RAM	Variables and stack
\$4000 to \$7FFF	16K	EEPROM	Program and constants
\$C000 to \$FFFF	16K	EEPROM	Program and constants


Port	48-pin	Shared Functions
Port A	PA0	Address/Data Bus
Port B	PB4	Address/Data Bus
Port E	PE7, PE4, PE1, PE0	System Integration Module
Port J	_	Key wakeup
Port M	PM5-PM0	SPI, CAN
Port P	PP5	Key wakeup, PWM
Port S	PS1-PS0	SCI
Port T	PT7-PT0	Timer, PWM
Port AD	PAD7-PAD0	Analog-to-Digital Converter
	Computing y of Utah	23 CS 5780



	Ass	embly Lang	guage
Assemb	ly languag	e instructions	have four fields:
Label	Opcode	Operand(s)	Comment
here	ldaa	\$0000	RegA = [\$0000]
	staa	\$3800	[\$3800] = RegA
	ldx	\$3802	$RegX = \{\$3802\}$
	stx	\$3804	$\{$3804\} = \text{RegX}$
Assemb	ly instruct	ions are transl	ated into machine code:
Object	code In	struction (Comment
			RegA = [\$0000]
	ol of Computir rsity of Utah	31	CS 5780

Addressing Modes						
An <i>addressing mode</i> is a operand(s)	way for an instru	ction to locate its				
About 80% of understand understanding the address		guage is				
Some simple addressing n	nodes:					
Inherent addressing m	ode (INH)					
Immediate addressing	mode (IMM)					
Direct page addressing	g mode (DIR)					
Extended addressing n	node (EXT)					
PC relative addressing	mode (REL)					
School of Computing	32	CS 5780				

		Inherent Mode				mmedia	te Mode	•
				Uses a fixe Data is inc			ne code.	
Jses no ope	erand fi	eld.		Obj code \$8624	Op 1daa	Operand #36	Comment RegA = 3	
Dbj code 33F 887 332	swi clra	Comment Software interr RegA = 0 RegA = [RegSP];			A		1 \$86 2 \$24 }1d	laa #36
				What is th	e differe	nce betwee	en ldaa #3	6 and ldaa #\$24?
School of University		33	CS 5780	University			34	CS 5780

Direct Pa	ige Mode	
Uses an 8-bit address to acce \$00FF.	ss from addresses \$0	000 to
Obj code Op Operand	Comment	
\$9624 ldaa 36	RegA = [\$0024]	
I/O \$0023 A \$57	EEPROM \$F800 \$F801 \$F802 \$F802 \$F803 \$Jldaa 3	6
What is the difference betwee	n ldaa #36 and lda	aa 36?
School of Computing University of Utah	35 CS	5780

PC Relative Addressing Mode

Used for branch and branch-to-subroutine instructions. Stores 8-bit signed relative offset from current PC rather than absolute address to branch to.

rr = (destination address) - (location of branch) - (size of the branch)

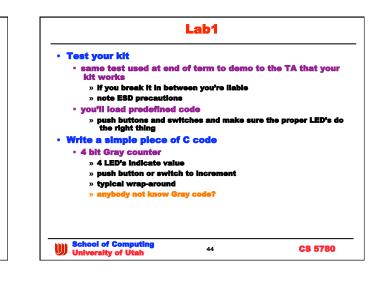
Assume branch located at \$F880.

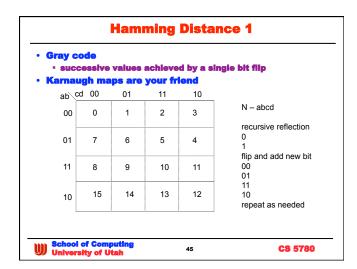
Obj code	Ор	Operand	Comment
\$20BE	bra	\$F840	F840 - F880 - 2 = -42 = BE
\$2046	bra	\$F8C8	F8C8 - F880 - 2 = 46

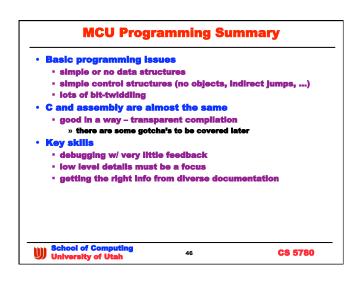
37

School of Computing University of Utah

CS 5780


Lab1Example.c Requirements
SW1 and PB2 light up LED1 (MCU board) and LED1 and LED2 (project board) when pressed SW2 and PB1 light up LED2 (MCU) and LED3/LED4 (project) when pressed • MCU board switches and LEDs
Application Module Student Learning Kit Users Guide (APS12C32SLKUG.pdf) contains the necessary information.
User jumpers table states that jumpers User1-4 must be on to enable the switches and LEDs (pg. 11).
Switches are active low (pg. 11).
SW1 and SW2 provide input on PORTE0 (PE0) and PORTP5 (PP5) respectively (pg. 11).
LEDs are active low (pg. 12).
LED1 and LED2 are driven by PORTA0 (PA0) and PORTB4 (PB4) respectively (pg. 12).
School of Computing 38 CS 5780


Project Board		MCU F	Port Map	pings	
MCU Project Board Student Learning Kit User Guide		Board port	MCU Port	Function	
(PBMCUSLKUG.pdf) contains the necessary information.		9	PP5	PB1	
Push button switches are active low (pg. 17).		11	PE0	PB2	
PB1 and PB2 are connected to the MCU via ports 9 and 11		33	PAD4	LED1	
		35	PAD5	LED2	
respectively (pg. 20).		37	PAD6	LED3	
Push buttons are enabled by a '0' on port 36 (pg. 21).		39	PAD7	LED4	
LEDs are active high (pg. 18).		34	PT4	LED_EN	
LED1-LED4 are connected to the MCU via ports 33, 35, 37, and 39 respectively (pg. 20).		36	PT5	PB_EN	
LEDs are enabled by a '0' on port 34 (pg. 21).	11 0	ound in Appli de (APS12C3			.earning
School of Computing 39 CS 5780	University		40		CS 5


		Config Register	Value	Functio
PORTE0	Input	DDRE0 (pg. 140)	0	SW1
PORTP5	Input	DDRP5 (pg. 94)	0	SW2
PORTA0	Output	DDRA0 (pg. 136)	1	LED1
PORTB4	Output	DDRB0 (pg. 137)	1	LED2
PORTP5	Input	DDRP5 (pg. 94)	0	PB1
PORTE0	Input	DDRE0 (pg. 140)	0	PB2
PORTAD4	Output	DDRAD4 (pg. 102)	1	LED1
PORTAD5	Output	DDRAD5 (pg. 102)	1	LED2
PORTAD6	Output	DDRAD6 (pg. 102)	1	LED3
PORTAD7	Output	DDRAD7 (pg. 102)	1	LED4
PORTT4	Output	DDRT4 (pg. 82)	1	LED_EI
PORTT5	Output	DDRT5 (pg. 82)	1	PB_EN

Lab1Example.c Code					
<pre>void main(void) {</pre>					
//Set the directio	n of ports A,B,E, and	Ρ.			
DDRA = OxFF;					
DDRB = OxFF;					
DDRE = 0x00; DDRP = 0x00;					
,	n of ports T and AD				
DDRT = PTT_PTT4_MA	•				
DDRAD = PTAD_PTAD7 PTAD_PTAD	_MASK PTAD_PTAD6_MASK 44_MASK;	PTAD_PTAD5_MASK			
//Enable project b	oard push buttons and	LEDs			
PTT = ~(PTT_PTT4_M	ASK PTT_PTT5_MASK);				
}					
Macro definitions are	e found in mc9s12c32.h.				
School of Computing University of Utah	42	CS 5780			

Alternatively				
void main(void) {				
<pre>//Set the direction DDRA = 0xFF;</pre>	of ports A,E	,T,AD,E, and P.		
DDRB = OxFF; DDRE = OxOO;				
DDRP = OxOO;				
DDRT = OxFF; DDRAD = OxFF;				
<pre>//Enable project box PTT = 0x00;</pre>	ard push butt	ons and LEDs		
}				
School of Computing University of Utah	43	CS 5780		

