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1 CS 5780 
School of Computing 
University of Utah 

Introduction to Embedded Systems 

CS/ECE 6780/5780 

Al Davis 

 Today’s topics: 

• some logistics updates 

• a brief view of processor history 

• 6812 Architecture 

• introduction to Lab1 

2 CS 5780 
School of Computing 
University of Utah 

Logistics 

•  Acronyms 
  it’s a disease and I have it  

»  you will too if you stay in the sport 

  don’t hesitate to ask what the heck I’m talking about  
»  e.g. DMA question after class last Thursday 

»  lectures are intended to be interactive – don’t be shy 

•  You should be on the mailing list ALREADY 
  if you aren’t get it done TODAY or drop the class 

»  it’s your choice 

•  Teams and lab sections 
  should be signed up by Thursday (2 days from now) 

  check out your lab kits 

  labs will start next week 
»  TA’s debugging the lab write up now 

•  it will be posted on the web by Thursday 
–  so don’t delay – it will be very hard to catch up after a slow start 
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My Records Indicate 

•  Just an fyi 
  registered but not on the mailing list 

»  Min, Najar, Sreedharan, Tateoka, Wiser, Worley 

  on mailing list but not registered 
»  Behera 

•  See me after class and let me know 
  if my records are wrong 

  and if not what your plans are 

•  So far out of a possible 42 students 
  26 have teams 

»  2 teams haven’t given me a lab section choice yet 

»  unteamed so far 
•  6780: 3 

•  5780: 13 

»  might have the odd number problem 
•  so get teams formed and let me know if you’re going to drop, etc. 
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Intel 4004 – first single chip computer? 

1970 – Burroughs D 
machine and an IBM 
microProc showed up 
around the same time 
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Intel 8008 (1972) 
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Intel 8080 (1974) 
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Intel 8086-8088 (1978) 

Notice anything different? 
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Intel 286 (1982) 
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Intel 386 (1985) 
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Intel486 DX (1989) 
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Intel Pentium (1993) 
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Intel Pentium Pro (1995) 
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Intel Pentium II (1997) 
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Intel Pentium III (1999) 
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Intel Pentium 4 (2000) 
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What’s the Point? 

•  Never ending progression 
  added architectural features 

»  simple accumulator machine 
•  no such thing as virtual memory 

»  add caches 

»  add virtual memory  cache translation == TLB 
•  physical vs. virtual page mapping 

•  segmentation also an option 

»  dynamic issue 

»  pipelining 

»  super-scalar 

»  multi-threading 

»  multiple cores 
•  deeper cache hierarchy 

•  coherence choices 

  added cost and power too 
»  not suitable for ES’s (4004 wasn’t a computer – Nehalem isn’t

 an ES choice) 
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Enter Microcontrollers 

•  2 ways to think about it 
  dumbed down microprocessor 

  get just what you need  
»  and not a bunch of power hungry crap that you don’t 

•  Realization circa 1980 that ES’s were necessary 
  and microprocessors were more than you needed 

»  ES’s don’t need the same generality 

  Intel produces the 8051 microcontroller 

  Motorola: 6805, 6808, 6811, 6812 
»  1999 – they shipped their 2B’th MC68HC05 

»  2004 – spins off microcontroller division  
•  call it Freescale Semiconductor 

•  still owned by Motorola but operates as an autonomous business
 unit  

–  well sort of 
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6812 Architecture 

•  Target 
  16-bit data path 

  low-power  low voltage but keep bus speed high 
  single wire background debug 

»  allow in-circuit “minimally intrusive” program and debug 

  support for level language programming 
»  in C??  What a hoot? 

•  Lots of variants 
  biggest difference is the I/O 

»  key aspect of ES controllers 
•  support for multiple standard interfaces* 

  hence pin count varies from ~60 to ~120 pins 

  amount of memory varies 

  why? 
»  target the various market segments we talked about last time 

•  automotive, medical, …. 
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Generic 6812 

•  Registers 
  2 8-bit accumulators (called A&B) 

»  combined to form a 16-bit accumulator (D) 

»  2 16-bit index registers (X, Y) 

»  8-bit condition code register 

»  stack pointer and PC 

  8-bit condition code register 

  ISA 
»  powerful bit manipulation instructions 

•  not typically found in mainstream µP’s 

»  arithmetic instructions 
•  16 bit +/- 

•  32 x 16 signed/unsigned divide (32? how?) 

•  16 x 16 fractional divide  

•  16 x 16 multiply 

•  32 + (16 x 16) MAC 

»  stack manipulation 
•  stack pointer points to top element and grows downward 
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Registers 
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Condition Code Register 

Stores critical state – important to understand how each instruction 
may influence this state. 
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Address Map for CSM12C32 
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External I/O Ports 
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CSM12C32 Block Diagram 
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Numbers and Addresses 

•  Byte-addressable 
  typical tradition (some of which is stupid in mainstream) 

•  Numbers 
  typical 2’s complement for signed 

»  +/- uses same HW, divide, mult, shift are different 

»  everybody know this stuff? 

  unsigned gives greater range – assumed positive 

  byte = 2 hex digits in C 
»  10110101 = $B5 = C’s version 0xB5 

»  also can represent a 7-bit ASCII code 

  programmer must keep track of signed vs. unsigned 
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16-bit Values & Lilliputian Wars 

Search “Lilliputian Wars” for an extended discussion of this problem. 
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Fixed-Point Numbers 

•  Often used in ES due to memory efficiency 
  FxPnum = xxx.yyyy (implicit decimal point) 

»  base can be decimal, binary, or whatever 

»  note the HW does binary 
•  if you want something else it will have to happen in SW 

–  translation back and forth will be required 

  problem 
»  you bet 

»  obscure code is not your friend 

»  implied decimal point and base 
•  often appears in the code as a comment 

•  YIKES 
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Precision, Resolution, and Range 

•  Precision - # of distinguishable values 

•  Resolution – smallest representable difference 
•  Range – representable set between min and max values 

•  Example 
  10-bit ADC with a range of 0 to +5V 

»  precision of 210 = 1024 values 
•  note binary decade hack (useful if you don’t already know it) 

•  10 bits = Kilo 

•  20 bits = Mega 

•  30 bits = Giga 

•  40 bits = Tera 

•  50 bits = Peta 

•  60 bits = Exa 

»  resolution of 5V/1024 = ~5mV 

»  representation 
•  16-bit fixed point number 

•  with base of 0.001V 
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Overflow and Drop-Out 

•  Overflow 
  calculated value is outside the range 

•  Drop-out 
  intermediate result can’t be represented 

•  Example 
  M = (53*N)/100 vs. M = 53*(N/100) 

»  given fixed number of bits normal arithmetic rules change 
•  e.g. order matters 

»  promotion to a higher precision avoids overflow 

»  dividing last avoids drop-out 
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Notation 
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Assembly Language 
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Addressing Modes 
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Inherent Mode 
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Immediate Mode 
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Direct Page Mode 
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Extended Addressing Mode 
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PC Relative Addressing Mode 
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Lab1Example.c Requirements 

•  SW1 and PB2 light up LED1 (MCU board) and LED1 and
 LED2 (project board) when pressed 

•  SW2 and PB1 light up LED2 (MCU) and LED3/LED4
 (project) when pressed 
  MCU board switches and LEDs 
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Project Board 
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MCU Port Mappings 
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MCU Port Configurations 
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Lab1Example.c Code 
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Alternatively 
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Lab1 

•  Test your kit 
  same test used at end of term to demo to the TA that your

 kit works 
»  if you break it in between you’re liable 

»  note ESD precautions 

  you’ll load predefined code 
»  push buttons and switches and make sure the proper LED’s do

 the right thing 

•  Write a simple piece of C code 
  4 bit Gray counter 

»  4 LED’s indicate value 

»  push button or switch to increment 

»  typical wrap-around 

»  anybody not know Gray code? 
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Hamming Distance 1 

•  Gray code 
  successive values achieved by a single bit flip 

•  Karnaugh maps are your friend 

00 01 11 

11 

10 

00 

01 

10 

1 0 2 3 

6 7 5 4 

9 8 10 11 

14 15 13 12 

N – abcd 

recursive reflection 
0 
1 
flip and add new bit 
00 
01 
11 
10 
repeat as needed 

ab cd 
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MCU Programming Summary 

•  Basic programming issues 
  simple or no data structures 

  simple control structures (no objects, indirect jumps, …) 
  lots of bit-twiddling 

•  C and assembly are almost the same 
  good in a way – transparent compilation 

»  there are some gotcha’s to be covered later 

•  Key skills 
  debugging w/ very little feedback 

  low level details must be a focus 

  getting the right info from diverse documentation 


