Introduction to Embedded Systems
CS/ECE 6780/5780

Al Davis

Today’s topics:
some logistics updates
a brief view of processor history
*6812 Architecture

sintroduction to Lab1

School of Computing
!yj University of Utah 1 CS 5780

Logistics

e Acronyms
* it’s a disease and | have it
» you will too if you stay in the sport
= don’t hesitate to ask what the heck I’m talking about
» e.g. DMA question after class last Thursday
» lectures are intended to be interactive - don’t be shy
* You should be on the mailing list ALREADY
= if you aren’t get it done TODAY or drop the class
» it’s your choice
e Teams and lab sections
= should be signed up by Thursday (2 days from now)
= check out your lab kits
= labs will start next week

» TA’s debugging the lab write up now
* it will be posted on the web by Thursday
- so don’t delay - It will be very hard to catch up after a slow start

School of Computing
!”J University of Utah 2 CS 5780

Page 1

My Records Indicate

o Just an fyi
= registered but not on the mailing list
» Min, Najar, Sreedharan, Tateoka, Wiser, Worley
= on mailing list but not registered
» Behera
* See me after class and let me know
= if my records are wrong
= and if not what your plans are
¢ So far out of a possible 42 students
= 26 have teams
» 2 teams haven’t given me a lab section choice yet
» unteamed so far
* 6780: 3
» 5780: 13
» might have the odd number problem
* so get teams formed and let me know if you’re going to drop, etc.

School of Computing
lyj University of Utah 3 CS 5780

Intel 4004 - first single chip computer?

1970 — Burroughs D
machine and an IBM
microProc showed up
around the same time

4-bit BCD
92 kHz
W) ooty of Cea . cs 5780

Page 2

Intel 8008 (1972)

8-bit
500 kHz

School of Computing
wj University of Utah 5 CS 5780

Intel 8080 (1974)

2 MHz
Considered to be the first

School of Computing
!”J University of Utah 6 CS 5780

Page 3

Intel 8086-8088 (1978)

Notice anything different?

School of Computing
!yj University of Utah 7 CS 5780

Intel 286 (1982)

iw
i
:'
i
i
i
f Ly
4w
i
te:
e

s e e 2 AR N E D e
e e

SE R L. esmssEE s w

School of Computing
!”J University of Utah 8 CS 5780

Page 4

Intel 386 (1985)

School of Computing
lyj University of Utah 9 CS 5780

Intel486 DX (1989)

AN | R | e ST N e o
e i ., :- B

5 BRSNS BRASE AREANA

School of Computing
!”J University of Utah 10 CS 5780

Page 5

Intel Pentium (1993)

!DJ School of Computing " CS 5780

University of Utah

Intel Pentium Pro (1995)

!DJ School of Computing

University of Utah 12 CS 5780

Page 6

Intel Pentium 1l (1997)

!DJ School of Computing

University of Utah 13 CS 5780

Intel Pentium Il (1999)

11t T
ikl ™

!”J School of Computing

University of Utah 14 CS 5780

Page 7

Intel Pentium 4 (2000)

=z

School of Computing
lDJ University of Utah 15 CS 5780

What’s the Point?

¢ Never ending progression
= added architectural features
» simple accumulator machine
* no such thing as virtual memory
» add caches
» add virtual memory = cache translation == TLB
« physical vs. virtual page mapping
* segmentation also an option
» dynamic issue
» pipelining
» super-scalar
» multi-threading
» multiple cores
* deeper cache hierarchy
* coherence choices
= added cost and power too

» not suitable for ES’s (4004 wasn’t a computer - Nehalem isn’t
an ES choice)

School of Computing
!”J University of Utah 16 CS 5780

Page 8

Enter Microcontrollers

e 2 ways to think about it
= dumbed down microprocessor
= get just what you need
» and not a bunch of power hungry crap that you don’t
* Realization circa 1980 that ES’s were necessary
* and microprocessors were more than you needed
» ES’s don’t need the same generality
* Intel produces the 8051 microcontroller
= Motorola: 6805, 6808, 6811, 6812
» 1999 - they shipped their 2B’th MC68HCO05
» 2004 - spins off microcontroller division

» call it Freescale Semiconductor

» still owned by Motorola but operates as an autonomous business
unit
- well sort of

School of Computing
!yj University of Utah 17 CS 5780

6812 Architecture

e Target
= 16-bit data path
* low-power - low voltage but keep bus speed high
* single wire background debug
» allow in-circuit “minimally intrusive” program and debug
= support for level language programming
» in C?? What a hoot?
* Lots of variants
* biggest difference is the 1/0
» key aspect of ES controllers
¢ support for multiple standard interfaces”
* hence pin count varies from ~60 to ~120 pins
* amount of memory varies
= why?
» target the various market segments we talked about last time
* automotive, medical,

School of Computing
!w University of Utah 18 CS 5780

Page 9

Generic 6812

* Registers
= 2 8-bit accumulators (called A&B)
» combined to form a 16-bit accumulator (D)
» 2 16-bit index registers (X, Y)
» 8-bit condition code register
» stack pointer and PC
= 8-bit condition code register
= ISA
» powerful bit manipulation instructions
¢ not typically found in mainstream pP’s
» arithmetic instructions
* 16 bit +/-
* 32 x 16 signed/unsigned divide (32?7 how?)
* 16 x 16 fractional divide
* 16 x 16 muitiply
* 32 + (16 x 16) MAC

» stack manipulation
* stack pointer points to top element and grows downward

School of Computing
!yj University of Utah 19 €S 5780
Registers

7 0

0 e ey gy g ey g g, . vk

ISXH I NZVC| CC 8-bit condition code
IS! Vs | 1 | 18 I . | I 1 A
| . Register A , | /Regiser B , | D Two 8-bit accumulators
| s ez wan a0 st e ¥ 16k ndextegister
BRIERRECEREE NI A i
L 0 . 0 vy, | SP 16-bit stack pointer

T T T T T T T T T T T T T T T >
L A3 i g Sk J PC 16-bit program counter

School of Computing
!w University of Utah 20 CS 5780

Page 10

Condition Code Register

Stores critical state — important to understand how each instruction
may influence this state.

cQ | S| XLH| 1| N2 V| C

3

1— Carry/borrow or unsigned overflow

Signed overflow

Zero

Negative

IRQ interrupt mask

Half carry from bit 3
XIRQ interrupt mask
Stop disable

School of Computing
!'JJ University of Utah 21 CS 5780

Address Map for CSM12C32

Address (hex) Size Device Contents
$0000 to $03FF 1K 1/0
$3800 to $3FFF 2K RAM Variables and stack

$4000 to $7FFF 16K EEPROM Program and constants
$C000 to $FFFF 16K EEPROM Program and constants

School of Computing
!”J University of Utah 22 CS 5780

Page 11

External 1/0 Ports

Port 48-pin

Shared Functions

PAO
PB4
PE7, PE4, PE1, PEO System

Port A
Port B
Port E
Port J
Port M
Port P
Port S
Port T
Port AD

PM5-PMO
PP5
PS1-PSO
PT7-PTO
PAD7-PADO

Address/Data Bus
Address/Data Bus

Integration Module
Key wakeup
SPI, CAN

Key wakeup, PWM

SCl

Timer, PWM
Analog-to-Digital Converter

V)

School of Computing

University of Utah 23

CS 5780

CSM12C32 Block Diagram

5 o Viu
+5 Vook 2K bytes RAM . 1
Vonx ADC vy
Voo Converter Vs
Vooi | 32K hytes EEPROM ANT
Vssr |— e
Vssx o ,\
Vas: HCS12 ANS
Vi cpPu AN3
2 Vst AN2
B AN1
BKGD Single-wire AND
RESET background | Periodic interrupt
EXTAL d:hncgrlm:tink = oGt
XTAL = TOOE [t
“XFe . COP watchdog TOCS [t
¥ XFC PLL clock Timer 10C
DOPLL=T™ cont ol Clock monitor Bt 10C3
Visserr 10C2]
- . —— 10C1
PET+—{ == NOACCXCLKS System 10C
PEG=— |+ MODB/PIPE! intration
PES=—+ 1 [=—> MODA/IPIPEO %
PEA=— '& f—! Eclk module -
PE3=—> & el [STRITAGLO (SIM) 4]
PR & [+a] mW e
PE|—> = RO PWM :,“«
PEN—>__—> XIRQ 2
- PWI
PAT ~<—>] | A15 DIS PWO.
PAG < el AL DId S
PAS | . || AI3 DI 2
PAS > = == A2 D2 External
PA3 =— & fa—sf AL DII bus L
PA2 <—> & <= Al0 DI0 jpierface SCK || _ M3
PAl ==> [ETHIA9 D9 - MOSI fe—pn{ = PM4
PAD == |l A8 DS SPl S8 | [PM3
PB7 =] A7 D7 MO+ & M2
PO == = A6 D6 MSCAN TCAN—| PMI
PBS <= o [w=si AS DS . RXCAN [==— MO
PB4 <> = (<= AL D4 » Ps3
PB3 <> £ > A3 13 g Ps2
PB2 = 5 [+ A2 D2 § D! ol o]
BB =— = S| A1 D Multiplexed ol HEL e Pso0
PBD ~—>| [+ A0 DO address/data T
R Bus |

)

School of Computing

University of Utah 24

CS 5780

Page 12

Numbers and Addresses

* Byte-addressable
= typical tradition (some of which is stupid in mainstream)

e Numbers
= typical 2’s complement for signed
» +/- uses same HW, divide, mult, shift are different
» everybody know this stuff?
* unsigned gives greater range — assumed positive
= byte = 2 hex digits in C
» 10110101 = $B5 = C’s version 0xB5
» also can represent a 7-bit ASCII code
= programmer must keep track of signed vs. unsigned

b7 | b6 | bS | b4 | b3 | b2 | bl b()l
N = 128-by +64-bs+32-bs+16-bs+8-b3+4-bx+2- b1+ bp (unsigned)
N = —128-b;+64-bg+32-bs+16-by+8-b3+4-by+2- by + by (signed)
School of Computing
W) university of Utah 25 €S 5780

16-bit Values & Lilliputian Wars

Search “Lilliputian Wars” for an extended discussion of this problem.

bl5|bl4|bI3|bl2|bll|bIO[b9 | b8 | b7 [b6 | bS | b4 [b3 | b2 | bl | bO

Endian comparison for the 16-bit number $03ES:

Address Contents Address Contents
$0050 | S03 $0050 | $ES8
$0051 SES $0051 $03

Big Endian Little Endian

Freescale microcontrollers use the big endian approach.

School of Computing
!”J University of Utah 26 CS 5780

Page 13

Fixed-Point Numbers

e Often used in ES due to memory efficiency
* FxPnum = xxx.yyyy (implicit decimal point)
» base can be decimal, binary, or whatever

» note the HW does binary

 if you want something else it will have to happen in SW
- translation back and forth will be required

= problem
» you bet
» obscure code is not your friend
» implied decimal point and base

+ often appears in the code as a comment
* YIKES

School of Computing
!DJ University of Utah 27 CS 5780

Precision, Resolution, and Range

¢ Precision - # of distinguishable values

¢ Resolution — smallest representable difference

¢ Range - representable set between min and max values
e Example

= 10-bit ADC with a range of 0 to +5V
» precision of 21° = 1024 values
* note binary decade hack (useful if you don’t already know it)
¢ 10 bits = Kilo
¢ 20 bits = Mega
* 30 bits = Giga
* 40 bits = Tera
¢ 50 bits = Peta
* 60 bits = Exa
» resolution of 5V/1024 = ~5mV
» representation
¢ 16-bit fixed point number
+ with base of 0.001V

School of Computing
!”J University of Utah 28 CS 5780

Page 14

Overflow and Drop-Out

e Overflow
= calculated value is outside the range
¢ Drop-out
* intermediate result can’t be represented

¢ Example
= M = (53*N)/100 vs. M = 53*(N/100)
» given fixed number of bits normal arithmetic rules change
* e.g. order matters
» promotion to a higher precision avoids overflow
» dividing last avoids drop-out

!DJ School of Computing 20 CS 5780

University of Utah

Notation

w is 8-bit signed (-128 to +127) or unsigned (0 to 255)
n is 8-bit signed (-128 to +127)
u is 8-bit unsigned (0 to 255)

W is 16-bit signed (-32787 to +32767) or unsigned (0 to
65535)

N is 16-bit signed (-32787 to +32767)

U is 16-bit unsigned (0 to 65535)

= [addr] specifies an 8-bit read from address

= {addr} specifies a 16-bit read from address (big endian)
=< addr > specifies a 32-bit read from address (big endian)
[addr] = specifies an 8-bit write to address

{addr} = specifies a 16-bit write to address (big endian)

< addr >= specifies a 32-bit write to address (big endian)

!”J School of Computing 30 CS 5780

University of Utah

Page 15

Assembly Language

Assembly language instructions have four fields:

Label Opcode Operand(s) Comment

here 1ldaa $0000 RegA = [$0000]
staa $3800 [$3800] = RegA
1dx $3802 RegX = {$3802}
stx $3804 {$3804} = RegX

Assembly instructions are translated into machine code:

Object code Instruction Comment
$96 $00 ldaa $0000 RegA = [$0000]

School of Computing
!w University of Utah 31 CS 5780

Addressing Modes

An addressing mode is a way for an instruction to locate its
operand(s)

About 80% of understanding assembly language is
understanding the addressing modes

Some simple addressing modes:
Inherent addressing mode (INH)
Immediate addressing mode (IMM)
Direct page addressing mode (DIR)
Extended addressing mode (EXT)
PC relative addressing mode (REL)

School of Computing
!DJ University of Utah 32 CS 5780

Page 16

Inherent Mode

Uses no operand field.

Obj code Op Comment

$3F swi Software interrupt
$87 clra ReghA =0
$32 pula RegA = [RegSP]; RegSP=RegSP+1

!DJ School of Computing 13 CS 5780

University of Utah

Immediate Mode

Uses a fixed constant.
Data is included in the machine code.

Obj code Op Operand Comment

$8624 ldaa #36 Regh = 36
EEPROM
$F800
$F801 | $86
A[$24+4 ;F802 324 }ldaa #36
$F803

What is the difference between 1daa #36 and 1ldaa #$247

School of Computing
!DJ University of Utah 34 CS 5780

Page 17

Direct Page Mode

Uses an 8-bit address to access from addresses $0000 to
$O00FF.

Obj code Op Operand Comment

$9624 ldaa 36 ReghA = [$0024]
1/0 EEPROM
$0023 $F800
$0024 | $57 $SF801 | $96
A L8574 50025 $F802 [$24 }ldaa oL
$F803

What is the difference between 1daa #36 and 1daa 367

School of Computing
!'JJ University of Utah 35 CS 5780

Extended Addressing Mode

Uses a 16-bit address to access all memory and |/O devices.

Obj code Op Operand Comment
$B60801 1daa $0801 ReghA = [$0801]

1/0 EEPROM
$0800 SF800
A = $0801 [$62 $F801 | $SB6
56 $0802 $F802 [$08 |)1daa $0801
$F803 | 501
School of Computing
!”J University of Utah 36 CS 5780

Page 18

PC Relative Addressing Mode

Used for branch and branch-to-subroutine instructions.

Stores 8-bit signed relative offset from current PC rather than
absolute address to branch to.

rr = (destination address) — (location of branch) — (size of the branch)

Assume branch located at $F880.

Obj code Op Operand Comment
$20BE bra $F840 $F840 — $F880 — 2 = —$42 = $BE
$2046 bra $F8C8 $F8C8 — $F880 — 2 = $46

!DJ School of Computing

University of Utah 37 CS 5780

Lab1Example.c Requirements

¢ SW1 and PB2 light up LED1 (MCU board) and LED1 and
LED2 (project board) when pressed

e SW2 and PB1 light up LED2 (MCU) and LED3/LED4
(project) when pressed
= MCU board switches and LEDs

Application Module Student Learning Kit Users Guide
(APS12C32SLKUG.pdf) contains the necessary information.

User jumpers table states that jumpers Userl-4 must be on to
enable the switches and LEDs (pg. 11).

Switches are active low (pg. 11).

SW1 and SW?2 provide input on PORTEO (PEO) and
PORTPS (PP5) respectively (pg. 11).

LEDs are active low (pg. 12).

LED1 and LED?2 are driven by PORTAO (PA0) and PORTB4
(PBA4) respectively (pg. 12).

!DJ School of Computing

University of Utah 38 CS 5780

Page 19

Project Board

MCU Project Board Student Learning Kit User Guide
(PBMCUSLKUG.pdf) contains the necessary information.

Push button switches are active low (pg. 17).
PB1 and PB2 are connected to the MCU via ports 9 and 11

respectively (pg. 20).

Push buttons are enabled by a '0" on port 36 (pg. 21).
LEDs are active high (pg. 18).

LED1-LED4 are connected to the MCU via ports 33, 35, 37,
and 39 respectively (pg. 20).

LEDs are enabled by a "0’ on port 34 (pg. 21).

V)

School of Computing
University of Utah

39

CS 5780

MCU Port Mappings

Board port | MCU Port | Function
9 PP5 PB1

11 PEO PB2

33 PAD4 LED1

35 PAD5 LED2

37 PAD6 LED3

39 PAD7 LED4
34 PT4 LED_EN
36 PT5 PB_EN

Mapping found in Application Module Student Learning Kit

Users Guide (APS12C32SLKUG.pdf) (pg. 11).

)

School of Computing
University of Utah

40

CS 5780

Page 20

MCU Port Configurations

MCU Port | Direction | Config Register Value | Function
PORTEO | Input DDREO (pg. 140) 0 SW1
PORTP5 | Input DDRP5 (pg. 94) 0 SW2
PORTAO | Output DDRAO (pg. 136) 1 LED1
PORTB4 | Output DDRBO (pg. 137) 1 LED2
PORTP5 | Input DDRP5 (pg. 94) 0 PB1
PORTEO | Input DDREO (pg. 140) 0 PB2
PORTAD4 | Output DDRAD4 (pg. 102) 1 LED1
PORTADS | Output DDRADS (pg. 102) 1 LED2
PORTADG6 | Output DDRAD6 (pg. 102) 1 LED3
PORTAD?7 | Output DDRAD7 (pg. 102) 1 LED4
PORTT4 | Output DDRT4 (pg. 82) 1 LED_EN
PORTT5 | Output DDRT5 (pg. 82) 1 PB_EN

Reference: MC9S12C Family Reference Manual (MC9S12C128V1.pdf).

School of Computing
!yj University of Utah M CS 5780

Lab1Example.c Code

void main(void) {
//Set the direction of ports A,B,E, and P.

DDRA = OxFF;
DDRB = OxFF;
DDRE = 0x00;
DDRP = 0x00;

//Set the direction of ports T and AD

DDRT = PTT_PTT4_MASK|PTT_PTT5_MASK;

DDRAD = PTAD_PTAD7_MASK|PTAD_PTAD6_MASK|PTAD_PTAD5_MASK
|PTAD_PTAD4_MASK;

//Enable project board push buttons and LEDs

PTT = ~(PTT_PTT4_MASK|PTT_PTT5_MASK) ;

Macro definitions are found in mc9s12c32.h.

School of Computing
!DJ University of Utah 42 CS 5780

Page 21

Alternatively

void main(void) {
//Set the direction of ports A,B,T,AD,E, and P.
DDRA = OxFF;

DDRB = OxFF;
DDRE = 0x00;
DDRP = 0x00;
DDRT = OxFF;
DDRAD = OxFF;

//Enable project board push buttons and LEDs
PTT = 0x00;

IDJ School of Computing

University of Utah a3 CS 5780

Lab1

¢ Test your kit
* same test used at end of term to demo to the TA that your
kit works
» if you break it in between you’re liable
» note ESD precautions
= you’ll load predefined code
» push buttons and switches and make sure the proper LED’s do
the right thing
* Write a simple piece of C code
= 4 bit Gray counter
» 4 LED’s indicate value
» push button or switch to increment
» typical wrap-around
» anybody not know Gray code?

!DJ School of Computing

University of Utah 44 CS 5780

Page 22

Hamming Distance 1

e Gray code
* successive values achieved by a single bit flip
* Karnaugh maps are your friend

ap~cd 00 01 11 10
00 0 1 2 3 N —abed
recursive reflection
01 7 6 5 4 (1)
flip and add new bit
1" 8 9 10 11 00
01
1"
10 15 14 13 12 10
repeat as needed

!DJ School of Computing a5 CS 5780

University of Utah

MCU Programming Summary

e Basic programming issues
= simple or no data structures
= simple control structures (no objects, indirect jumps, ...)
= lots of bit-twiddling
e C and assembly are almost the same
= good in a way - transparent compilation
» there are some gotcha’s to be covered later
* Key skills
* debugging w/ very little feedback
= low level details must be a focus
= getting the right info from diverse documentation

!DJ School of Computing 26 CS 5780

University of Utah

Page 23

