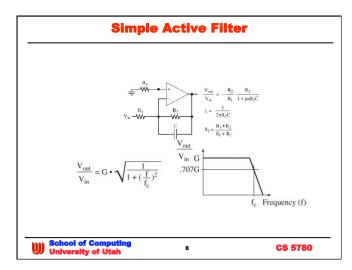
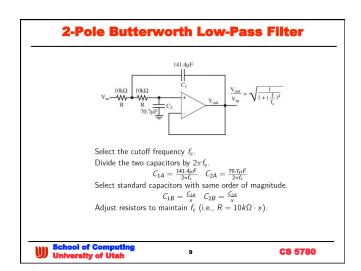
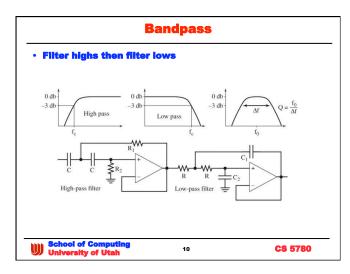
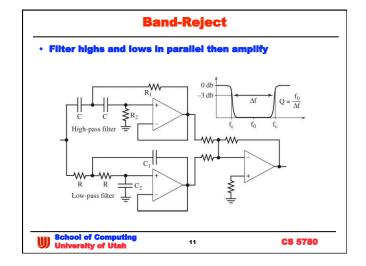
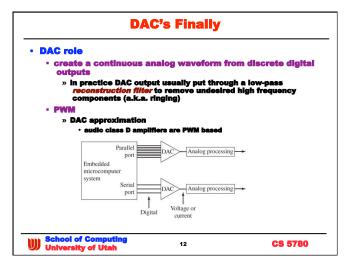

CS/ECE 6780/5780 Al Davis Today's topics: • Midterm 2 hints • no practice midterm since it didn't help last time • ADC's and DAC's • chapter 11 of your text • your kit has an A/D (Port D w/ DDR set to inputs) • handy since sensors often supply analog value • your kit doesn't have a D/A • sometimes needed for analog control of external devices (e.g. VF converters) • which I was hoping to have as a lab (alas) School of Computing University of Utah

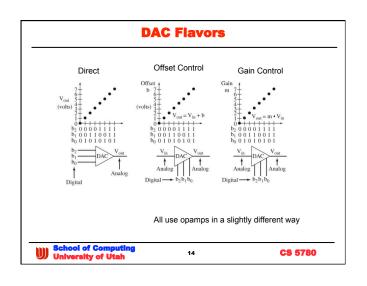


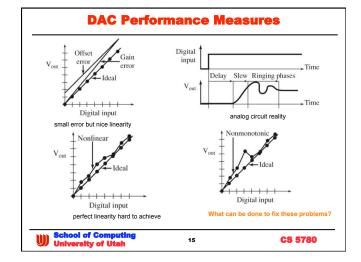


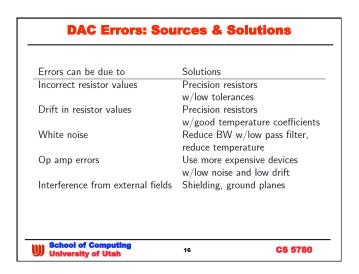


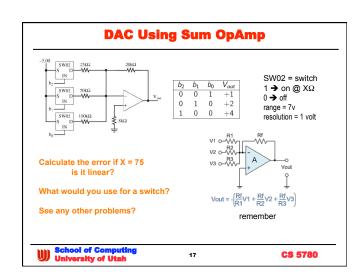


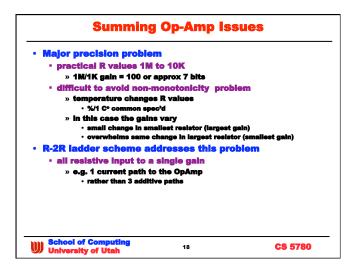


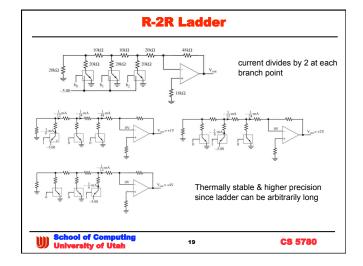


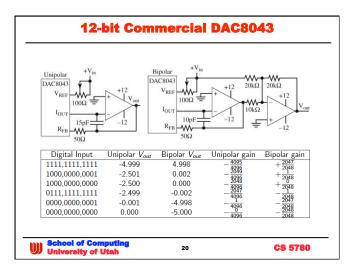


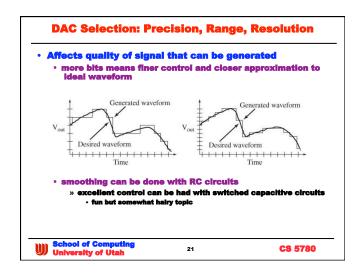


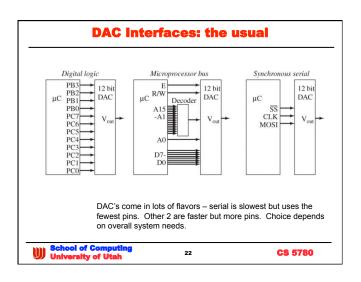


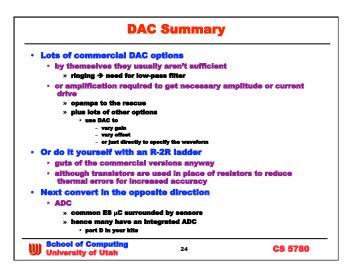

Precision - # of distinguishable DAC outputs • Range - min to max of output values • Resolution - smallest distinguishable change in output Range (volts) = Precision (alternatives) · Resolution (volts) • 2 common encoding schemes 2's complement and 1's complement $V_{out} = V_{ls} \left(\frac{b_f}{2} + \frac{b_h}{4} + \frac{b_3}{8} + \frac{b_h}{16} + \frac{b_2}{32} + \frac{b_1}{64} + \frac{b_1}{128} + \frac{b_0}{256} \right) + V_{os}$ $V_{out} = V_{ls} \left(-\frac{b_7}{2} + \frac{b_8}{4} + \frac{b_8}{8} + \frac{b_4}{16} + \frac{b_3}{32} + \frac{b_1}{64} + \frac{b_1}{128} + \frac{b_0}{256} \right) + V_{os}$ Vos = output offset voltage

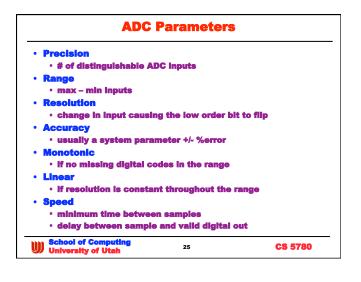


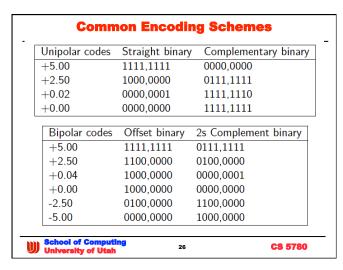


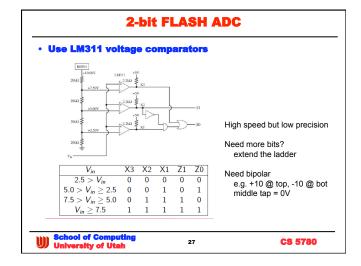


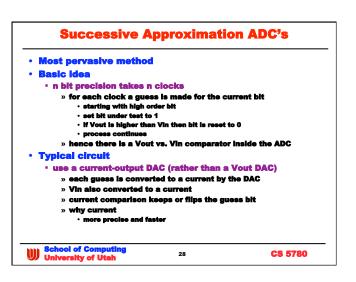


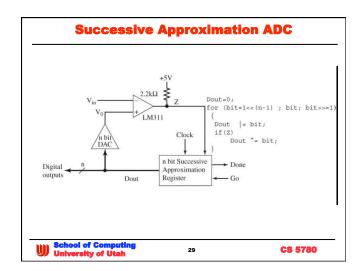


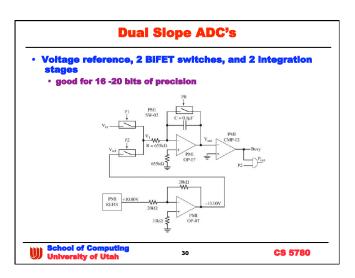


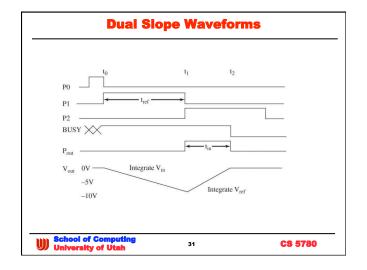


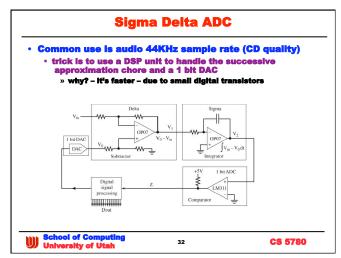


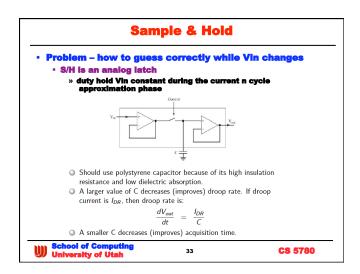


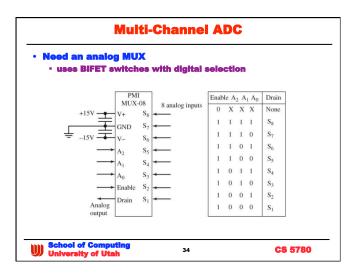


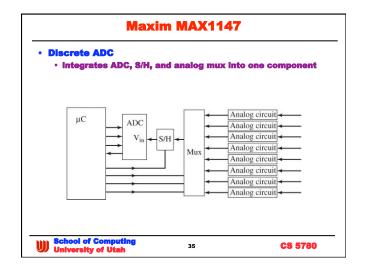


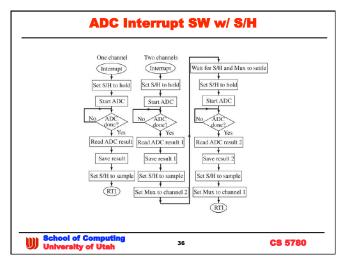












6812 Internal ADC • Eight channel operation 8 or 10-bit resolution • Successive approximation technique Clock and charge pump to create higher voltages • 2 operation modes • single sequence and stop

- multiple conversions of single channel · or one conversion each for a group of channels
- External reference voltages · Vrh - high reference
 - · Vri low reference

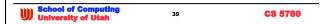
- continuous

Supports

CS 5780

6812 ADC Setup

- Port AD input configurations
 - 8 pins individually configured for anolog or digital input
 - » ATDDIEN register
 - · 1 = digital, 0 = analog
 - If ATTDIEN indicates digital
 - » then DDRAD register is used to set direction
 - SRES8 (ATDCTL4[7]) register selects resolution
 - » 1 → 8-bit, 0→ 10-bit
 - ATDCTL2 register
 - » [7] = ADPU set to 1 to enable ADC system
 - » [1] = ASCIE set to 1 to enable/arm interrupts
 - » [0] = ASCIF set by ADC to 1 when sequence comple · only works If ASCIE is set



CS 5780

CS 5780

6812 ADC Conversions

- When triggered
 - 1-8 conversions are performed
 - » # = value in ATDCTL3[6:3]
- · Channel selection
 - · ATDCTL5[2:0]= CC,CB,CA
- Multiple channels
 - set ATDCTL5[4] = 1
 - sequence set by ATDCTL3[6:3] start here and cycle
 - · each channel has separate completion flag
 - » ATDSTAT1 register (8 bits)
 - » ATDSTAT0[2:0] counter which shows conversion progress

6812 ADC Triggers

- Triggered in 3 ways
 - explicit software write to ATDCTL5 when interrupts armed
 - · continuous if SCAN = ATDCTL5[5] is 1
 - external trigger if ETRIG = ATDCTL2[2] is 1
 - » in this case ETRIGLE & ETRIGP controls what the trigger is

ETRIGLE	ETRIGP	External trigger mode	
0	0	Falling edge of PAD7	
0	1	Rising edge of PAD7	
1	0	Convert while PAD7 is low	
1	1	Convert while PAD7 is high	

School of Computing University of Utah 40

6812 ADC Sample Period

- 2 phase sample
 - 1st phase transfer sample to S/H
 - · 2nd phase attaches external signal to S/H
- E clock and ATDCTL4 control
 - SMP1 & SMP2 ATDCTL4[6:5]

SMP1	SMP0	First sample	Second sample	Total
0	0	2 ADC clocks	2 ADC clocks	4 ADC clocks
0	1	2 ADC clocks	4 ADC clocks	6 ADC clocks
1	0	2 ADC clocks	8 ADC clocks	10 ADC clocks
1	1	2 ADC clocks	16 ADC clocks	18 ADC clocks

• If m is a 5 bit number ATDCTL4[4:0] & $f_{\rm E}$ is E clock then

ATD clock frequency
$$= \frac{1}{2} \frac{f_E}{(m+1)}$$

School of Computing University of Utah

CS 5780

6812 ADC Results

- Up to 8 samples
 - stored in 8 16-bit registers ATDDR0:ATDDR7
 - » results can be signed or unsigned
 - DSGN = ATDCTL5[6] 1 for signed, 0 for a
 - 1 for signed, 0 for unsigned

 » right or left justified in the 16-bit register
 - · DJM = ATDCTL5[7]
 - 1 for right justi

Input (V)	8-bit(u)	10-bit(ur)	10-bit (ul)	10-bit (sr)	10-bit (sl)
0.000	\$00	\$0000	\$0000	\$FE00	\$8000
0.005	\$00	\$0001	\$0040	\$FE01	\$8040
0.020	\$01	\$0004	\$0100	\$FE04	\$8100
2.500	\$80	\$0200	\$8000	\$0000	\$0000
3.750	\$C0	\$0300	\$C000	\$0100	\$4000
5.000	\$FF	\$03FF	\$FFC0	\$01FF	\$7FC0

School of Computing University of Utah

CS 5780

ADC Software Example

• SW trigger and Gadfly loop

```
void ADC_Init(void){
  ATDCTL2 = 0x80; // enable ADC
  ATDCTL3 = 0x08;
  ATDCTL4 = 0x05; // 10-bit, divide by 12
unsigned short ADC_In(unsigned short chan){
  ATDCTL5 = (unsigned char)chan; // start sequence while((ATDSTAT1&0x01)==0){}; // wait for CCF0
 return ATDDRO;
```

School of Computing University of Utah

43

CS 5780

Concluding Remarks

- Whiriwind tour for sure
 - · like everything in this course
 - » learn by experimenting in the lab
 - » lecture is HOPEFULLY just a conceptual start
 - · can't possibly cover every detail or it would be MORE boring
- ADC and DAC
 - Integral part of ES life
 - » PWM is good for some things
 - » more direct analog reading or control is required for others
 - midterm2
 - » no lab on this stuff so conceptual questions only
 - » you should understand the basics without having to look them
 - look up is good for nitty gritty details
 you'll know them by heart once you've fialled in the lab long en
 - **Midterm next Tuesday**
- don't be late

School of Computing University of Utah

44

CS 5780