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CS/ECE 6780/5780 

Al Davis 

 Today’s topics: 

•  Midterm 2 hints 
•  no practice midterm since it didn’t help last time 

•  ADC’s and DAC’s 

•  chapter 11 of your text 

•  your kit has an A/D (Port D w/ DDR set to inputs) 

• handy since sensors often supply analog value 

•  your kit doesn’t have a D/A 

•  sometimes needed for analog control of
 external devices (e.g. VF converters) 

•  which I was hoping to have as a lab (alas) 
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Midterm #2 

•  Focus 
  primarily on material covered after the first midterm 

»  note I’m not a fan of the cram and forget mode 
•  unhealthy attitude in a professional discipline 

•  hence some (~10%) material “might” appear from pre-midterm1 material 

»  style likely to be similar to midterm #1 
•  focus on foundational concepts 

•  “write a bunch of code” problems are good for take home exams 
–  but you did this in the labs – so what’s the point 

»  open book and open notes 
•  danger – if you have to look up every question you’ll lose 

•  Post midterm1 material 
  semaphores and threads 

  input capture and output compare 

  serial I/O: SCI, SPI, UART, RS232 

  relays and motors, stepper motor control 

  memory: SRAM, DRAM, NVRAM 

  ADC & DAC 

•  All are fair game! (book, lectures, & labs) 
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OpAmp Review 

•  Almost ubiquitous analog circuit element since ~1968 
  3 terminal element w/ + & - voltage rails 

»  acts as a differential voltage amplifier 
•  ideal opamp 

–  input impedance infinite, output impedance 0 

–  gain infinite, 0 offset voltage  

•  real opamp (varies w/ part) 
–  high open-loop gain 100K to 1M  

–  high Zin and low Zout 

741 is common & cheap 

V- <= Vout <= V+ (output saturation) 

source: Wayne Storr 
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Inverting & Non-inverting Circuits 

source: Wayne Storr 



Page 3 

5 CS 5780 
School of Computing 
University of Utah 

Differential & Summing Circuits 

source: Wayne Storr 
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Differentiation & Integration 

jω = 2πf 

RC dependent 
shape 

180o phase change due to - input source: Wayne Storr 
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Passive Filter Review 

•  Passive = RLC circuit 
  L blocks high-f signals and pass low-f signals 

  C blocks low-f signals and pass high-f signals 

•  Low pass filter  
  signal passes through an L or C provides a path to ground 

•  High pass filter 
  signal passes through a C or L provides a path to grount 

•  R’s 
  impedance is not frequency dependent 

  but can be used in filters to aid frequency selection 
»  due to RC time constant 

•  Terminology 
  fc ::= cutoff frequency 

»  3db gain loss point 
•  power is I2V hence 3db = .707 

•  3 db = 1/P1 where P1 = 103/20 P0 
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Simple Active Filter 
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2-Pole Butterworth Low-Pass Filter 
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Bandpass 

•  Filter highs then filter lows 
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Band-Reject 

•  Filter highs and lows in parallel then amplify 
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DAC’s Finally 

•  DAC role 
  create a continuous analog waveform from discrete digital

 outputs 
»  in practice DAC output usually put through a low-pass

 reconstruction filter to remove undesired high frequency
 components (a.k.a. ringing) 

  PWM  
»  DAC approximation 

•  audio class D amplifiers are PWM based 
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DAC Parameters 

•  Precision 
  # of distinguishable DAC outputs 

•  Range 
  min to max of output values 

•  Resolution 
  smallest distinguishable change in output 

•  2 common encoding schemes 2’s complement and 1’s
 complement 

Vos = output offset voltage 
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DAC Flavors 

Direct Offset Control Gain Control 

All use opamps in a slightly different way 
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DAC Performance Measures 

small error but nice linearity 
analog circuit reality 

perfect linearity hard to achieve What can be done to fix these problems? 
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DAC Errors: Sources & Solutions 
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DAC Using Sum OpAmp 

SW02 = switch 
1  on @ XΩ
0  off 
range = 7v 
resolution = 1 volt 

remember 

Calculate the error if X = 75 
 is it linear? 

What would you use for a switch? 

See any other problems? 
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Summing Op-Amp Issues 

•  Major precision problem 
  practical R values 1M to 10K  

»  1M/1K gain = 100 or approx 7 bits 

  difficult to avoid non-monotonicity  problem 
»  temperature changes R values 

•  %/1 Co common spec’d 

»  in this case the gains vary 
•  small change in smallest resistor (largest gain) 

•  overwhelms same change in largest resistor (smallest gain) 

•  R-2R ladder scheme addresses this problem 
  all resistive input to a single gain 

»  e.g. 1 current path to the OpAmp 
•  rather than 3 additive paths 
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R-2R Ladder 

current divides by 2 at each 
branch point 

Thermally stable & higher precision 
since ladder can be arbitrarily long 
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12-bit Commercial DAC8043 
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DAC Selection: Precision, Range, Resolution 

•  Affects quality of signal that can be generated 
  more bits means finer control and closer approximation to

 ideal waveform 

  smoothing can be done with RC circuits 
»  excellent control can be had with switched capacitive circuits 

•  fun but somewhat hairy topic 
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DAC Interfaces: the usual 

DAC’s come in lots of flavors – serial is slowest but uses the  
fewest pins.  Other 2 are faster but more pins.  Choice depends  
on overall system needs. 
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DAC Packages: several flavors 

Cost varies with precision, power, accuracy, … 
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DAC Summary 

•  Lots of commercial DAC options 
  by themselves they usually aren’t sufficient 

»  ringing  need for low-pass filter 

  or amplification required to get necessary amplitude or current
 drive 

»  opamps to the rescue 

»  plus lots of other options 
•  use DAC to 

–  vary gain 
–  vary offset 

–  or just directly to specify the waveform 

•  Or do it yourself with an R-2R ladder 
  guts of the commercial versions anyway  

  although transistors are used in place of resistors to reduce
 thermal errors for increased accuracy 

•  Next convert in the opposite direction 
  ADC 

»  common ES µC surrounded by sensors 

»  hence many have an integrated ADC 
•  port D in your kits 
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ADC Parameters 

•  Precision 
  # of distinguishable ADC inputs 

•  Range 
  max – min inputs 

•  Resolution 
  change in input causing the low order bit to flip 

•  Accuracy 
  usually a system parameter +/- %error 

•  Monotonic 
  if no missing digital codes in the range 

•  Linear 
  if resolution is constant throughout the range 

•  Speed 
  minimum time between samples 

  delay between sample and valid digital out 
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Common Encoding Schemes 
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2-bit FLASH ADC 

•  Use LM311 voltage comparators 

High speed but low precision 

Need more bits? 
    extend the ladder 

Need bipolar 
    e.g. +10 @ top, -10 @ bot 
    middle tap = 0V 
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Successive Approximation ADC’s 

•  Most pervasive method 

•  Basic idea 
  n bit precision takes n clocks  

»  for each clock a guess is made for the current bit 
•  starting with high order bit 

•  set bit under test to 1 

•  if Vout is higher than Vin then bit is reset to 0 

•  process continues 

»  hence there is a Vout vs. Vin comparator inside the ADC 

•  Typical circuit 
  use a current-output DAC (rather than a Vout DAC) 

»  each guess is converted to a current by the DAC 

»  Vin also converted to a current 

»  current comparison keeps or flips the guess bit 

»  why current 
•  more precise and faster 
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Successive Approximation ADC 
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Dual Slope ADC’s 

•  Voltage reference, 2 BiFET switches, and 2 integration
 stages 
  good for 16 -20 bits of precision 
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Dual Slope Waveforms 
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Sigma Delta ADC 

•  Common use is audio 44KHz sample rate (CD quality) 
  trick is to use a DSP unit to handle the successive

 approximation chore and a 1 bit DAC 
»  why? – it’s faster – due to small digital transistors 
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Sample & Hold 

•  Problem – how to guess correctly while Vin changes 
  S/H is an analog latch 

»  duty hold Vin constant during the current n cycle
 approximation phase 
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Multi-Channel ADC 

•  Need an analog MUX 
  uses BiFET switches with digital selection 
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Maxim MAX1147 

•  Discrete ADC 
  integrates ADC, S/H, and analog mux into one component 
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ADC Interrupt SW w/ S/H 
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6812 Internal ADC 

•  Eight channel operation 

•  8 or 10-bit resolution 
•  Successive approximation technique 

•  Clock and charge pump to create higher voltages 

•  2 operation modes 
  single sequence and stop 

  continuous 

•  Supports 
  multiple conversions of single channel 

  or one conversion each for a group of channels 

•  External reference voltages 
  Vrh – high reference 

  Vrl – low reference 
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6812 ADC Setup 

•  Port AD input configurations 
  8 pins individually configured for anolog or digital input 

»  ATDDIEN register 
•  1 = digital, 0 = analog 

  If ATTDIEN indicates digital 
»  then DDRAD register is used to set direction 

  SRES8 (ATDCTL4[7]) register selects resolution 
»  1  8-bit, 0 10-bit 

  ATDCTL2 register 
»  [7] = ADPU – set to 1 to enable ADC system 

»  [1] = ASCIE – set to 1 to enable/arm interrupts 

»  [0] = ASCIF – set by ADC to 1 when sequence completes 
•  only works if ASCIE is set 
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6812 ADC Conversions 

•  When triggered 
  1-8 conversions are performed 

»  # = value in ATDCTL3[6:3] 
•  if value >= 8 still means 8 

•  Channel selection 
  ATDCTL5[2:0]= CC,CB,CA 

•  Multiple channels 
  set ATDCTL5[4] = 1 

  sequence set by ATDCTL3[6:3] – start here and cycle 

  each channel has separate completion flag 
»  ATDSTAT1 register (8 bits) 

»  ATDSTAT0[2:0] – counter which shows conversion progress 
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6812 ADC Triggers 

•  Triggered in 3 ways 
  explicit software write to ATDCTL5 when interrupts armed  

  continuous if SCAN = ATDCTL5[5] is 1 
  external trigger if ETRIG = ATDCTL2[2] is 1 

»  in this case ETRIGLE & ETRIGP controls what the trigger is 
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6812 ADC Sample Period 

•  2 phase sample 
  1st phase – transfer sample to S/H 

  2nd phase – attaches external signal to S/H 

•  E clock and ATDCTL4 control 
  SMP1 & SMP2 ATDCTL4[6:5] 

  if m is a 5 bit number ATDCTL4[4:0] & fE is E clock then 
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6812 ADC Results 

•  Up to 8 samples 
  stored in 8 16-bit registers ATDDR0:ATDDR7 

»  results can be signed or unsigned 
•  DSGN = ATDCTL5[6] 

–  1 for signed, 0 for unsigned 

»  right or left justified in the 16-bit register 
•  DJM = ATDCTL5[7] 

–  1 for right justified, 0 for left 
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ADC Software Example 

•  SW trigger and Gadfly loop 
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Concluding Remarks 

•  Whirlwind tour for sure 
  like everything in this course 

»  learn by experimenting in the lab 

»  lecture is HOPEFULLY just a conceptual start 
•  can’t possibly cover every detail or it would be MORE boring 

•  ADC and DAC 
  integral part of ES life 

»  PWM is good for some things 

»  more direct analog reading or control is required for others 

  midterm2 
»  no lab on this stuff so conceptual questions only  

»  you should understand the basics without having to look them
 up 

•  look up is good for nitty gritty details 
–  you’ll know them by heart once you’ve flailed in the lab long enough 

•  Midterm next Tuesday 
  don’t be late 


