

		NV	
Tradition	al non-volatile		
 Magnet 	ic Disk		
» che	ap		
» mb	ed use: file syste	m and scratch	
· CD, DV	D		
		it but less capacity	
	dia and SW distrib	oution, personal arc	:hivai
• Tape			
	apest hival storage		
 Solid st 			
	re spendy but fast	her	
:	PROM in various fla FLASH has essentia	vors - now primarily n ally taken over at the o on the horizon hower	component level

	Flash		FeRAM	MRAM	PCM	Probe Storage
Cell Type	NOR 1T	NAND 1T	1T/1C	1T/1R	1T/1R	AFM-based
Cell Size (F^2)	10	4 or 5	30-100	30-50	8-16	0.4 (no litho)
Endurance W/R	10^6/inf	1	10^12/10^12	>10^14/inf	10^12/inf	10*5- 10*12/10*7-inf
Read Time (random)	60 ns	60 ns / serial	40 + 80 ns	30 ns	60 ns	2-20ms
Write time (byte)	1 us	200 us / page	(read + write destructive	30 ns	10 ns	0.1-1 ms for each tip
Erase time (byte)	1 s / sector	2 ms / block	read)	30 ns	150 ns	< 1 us /bit
Scalability	Fair	Fair	Poor	Poor	Good	Very Good
Scalability Limits	Tunnel oxide, I	ŧv	Capacitor	Current Density	Litho	None
Multi-bit capability	Yes		No	No	Yes	No
Relative cost/bit	Medium	Low	High	High	Medium	Very low
Maturity	Very high		Medium	Low	Low	Very low

NAND vs. NOR Properties

NAND

Advantages

Disadvantages

Random read

Random write

Erase block size

Erase time (typ)

Part Number

Sustained read (sector basis)

Sustained write (sector basis)

School of Computing University of Utah

Fast writes Fast erases

Slow random access

~300 us/2112 bytes

5 MB/s

128 KiB

MT29F2G08A

2 ms

25 us first byte, 0.03 us for remaining 2,111 bytes

7

23 MB/s (x8) or 37 MB/s (x16)

No word writes

Source: Micron

NOR

Random access

Read-while-erase

20.5 MB/s (x8) or 41 MB/s (x16)

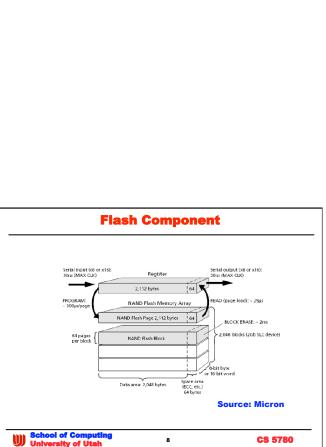
 (b_i)

CS 5780

Slow writes

Slow erases

180 us/32 bytes

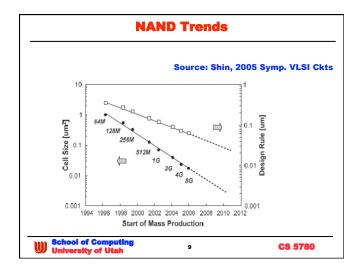

0.178 MB/s

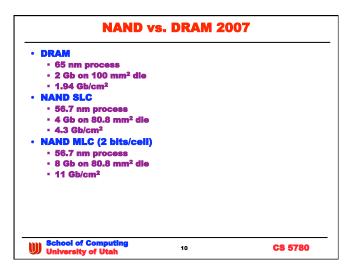
128 KiB

750 ms

MT28F128J3

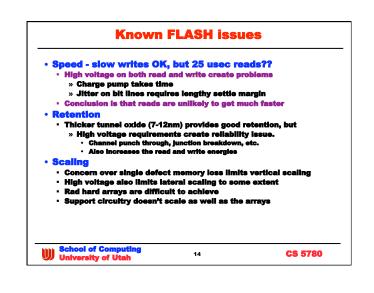
0.12 us

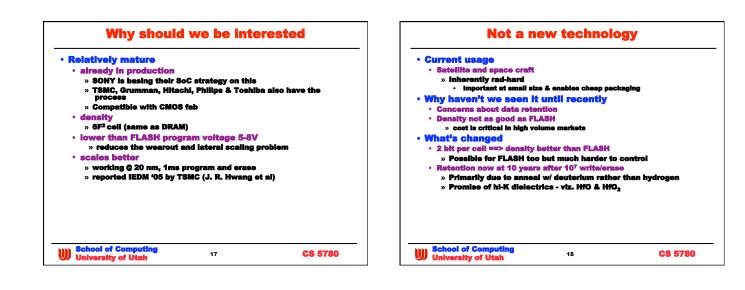

6

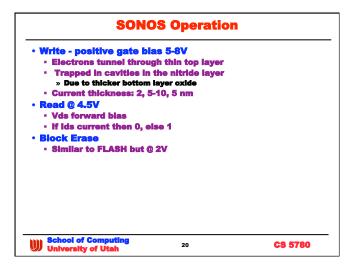

Source: Micron

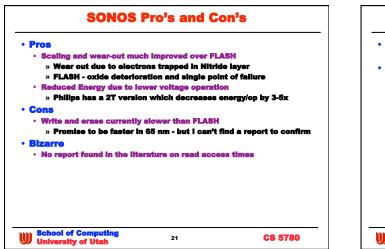
NAND: 4F²

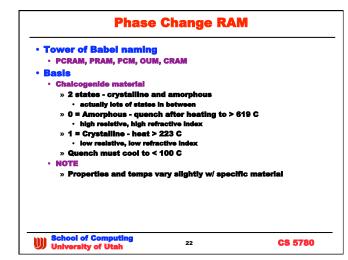
NOR: 10F²

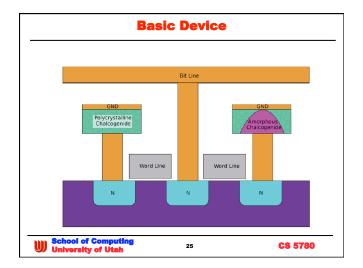

DRAM: 6-8F²

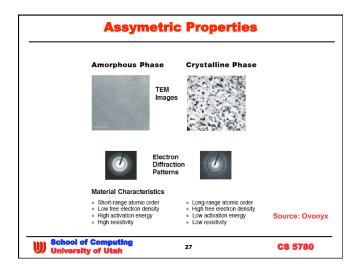


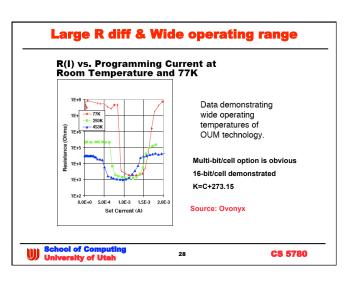

	-	-
	NOR Flash	NAND Flash
Applications	Code, data	Mass storage
Future applications	MLC: mass storage	Code and data
Density range	Up to 512Kb	Up to 4Gb
READ latency	60ns-120ns	25µs
Max Read bandwidth	41 MB/s-112 MB/s (16b)	40 MB/s (16b bus)
Max Write bandwidth	0.25 MB/s	5MB/s
Erase time	400ms (128KB blk)	2ms (128KB block)
Read device current	1.6x	1x
Write device current	3x	1x
Read device current	1.6x 3x	1x 1x
	Source: Micro	
Note - NAND read times	s haven't changed in yea	rs

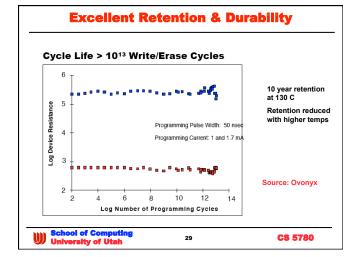


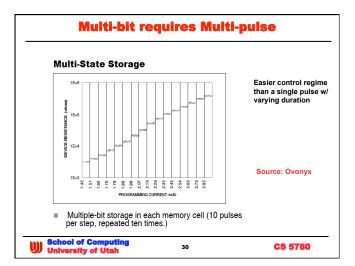

More Issues	SONOS/MONOS
 Retention 10⁶ block erase wear out Gets considerably worse for multi-bit cells Density/Retention trade-off Wear leveling a must for computer systems Who cares for IPods, cameras, ES code, etc. there just aren't that many writes both reads are sequential, writes are block oriented Use model Somewhat goofy Write once cells or block erase Complex controller Not much worse than DRAM however with all of it's timing complexity 	 ONOS - oxide nitride oxide semiconductor M=metal gate - common outside US S= silicon - more common in US Varying views some view as a FLASH evolution others view as a fundamentally different technology both views are credible but who cares?
University of Utah 15 CS 5780	School of Computing University of Utah 16 CS 5780



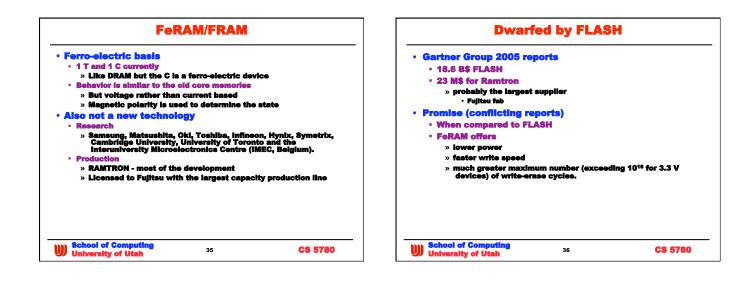


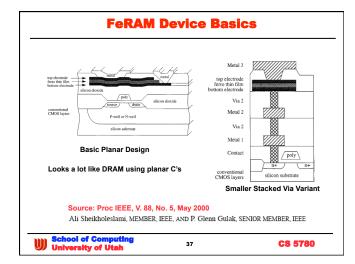



Also Not a New Technology	We use this stuff now - differently
 Timeline '66 Stanford Ovshinsky (ECD) first patent '69 ECD patent and working device '99 Ovonyx joint venture starts as license source '04 64 Mb Samsung part '05 256 Mb Samsung plus w/ 100 uA programming » Hitachi 100 uA @ 1.5v programming current '06 BAE puts rad-hard parts in space » 1st commercially available part '06 STM 128 Mb commercial '07 IDF demo by Justin Rattner of intel version today – multiple vendors and higher capacity parts 	 CD-RW and DVD-RW Chalcogenide based Laser to do the heating Read based on refraction differences - not resistance



Lot's of Chalcogenides						
Binary	Ternary	Quaternary				
Ga Sb	$Ge_2Sb_2Te_5$	Ag In Sb Te				
In Sb	In Sb Te	(Ge Sn)Sb Te				
In Se	Ga Se Te	Ge Sb (Se Te)				
$Sb_2 Te_3$	$Sn Sb_2 Te_4$	Te ₈₁ Ge ₁₅ Sb ₂ S ₂				
Ge Te	In Sb Ge					
	Most commo	nly used is GST				
Source: Ovo	onyx					
School of Computing University of Utah	26	CS 5780				

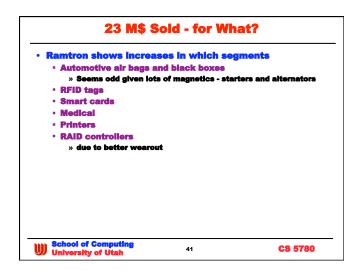


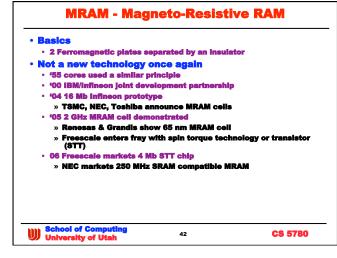


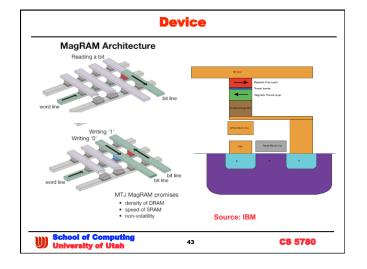
Other Advanta	ges		OK wher	e's the dow	nside
Scalability Primarily limited by lithography » caveat - thermal isolation bands may i claim is quaternary materials are the so - event lis dense but heart hit commer - why! material is more expensive and fab Performance improves linearly w/ feature What we care about in a write most E.g. check point memory - white the ideal is "read never" since i write time is short low write energy 3D possible w/ epitaxial thin films Claimed but not demonstrated as far as i	lution here isla space yet may not be tuned for it size iy environment nothing bad happened	• 1	Based on the Ovonyx : • Everybody should use the • It isn't so what's up? HEAT • Semi-conductors give off » The rest is returned to • In PCram write operation • Longer quench time if we problem SSUES • Retention tracks amblen • Good cooling means high • BIG ONE: material defect » manifests itself in wite • e.g. all 0's don't look • hence wide 0- and 1- » it's a long way from ti	is stuff and FLASH si f ~50% of their power o the power supply ns - ~100% of the power ites to same neighbor to same support t issues currents t issues currently has de range of resistance t the same -band margine	r as heat wer is given off as heat orhood - control ve yield issues te values
School of Computing 33 University of Utah 33	CS 5780		School of Computing University of Utah	34	CS 5780

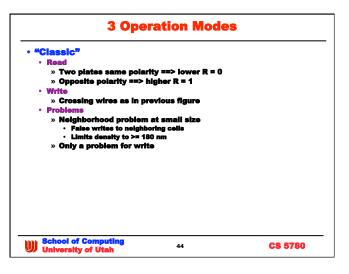
Compared w/ Flash and EEPROM

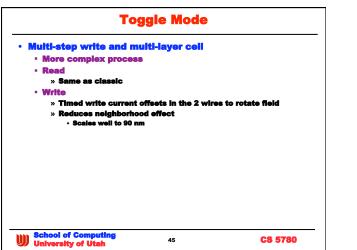
Nonvolatile Memory	Area/Cell (normalized)	Read Access-Time	Write (prog.) Access-Time	Energy* per 32b Write	Energy* per 32b Read
EEPROM	2	50ns	10µs	ίμľ	150pJ
Flash Memory	1	50ns	100ns	2µJ	150pJ
Ferroelectric Memory	5 (†)	100ns	100ns	inJ	lnJ
Note: Flash	access times	are not corre	ct - makes on	e wonder abo	ut the rest
Note: Flash	access times	are not corre	ct - makes on	e wonder abo	ut the rest
the stacke	d version are	a is 2x bigger		e wonder abo	ut the rest
the stacke Larger siz	d version are e is due to old	a is 2x bigger I process	than Flash	e wonder abo	ut the rest
the stacke Larger siz	d version are	a is 2x bigger I process	than Flash	e wonder abo	ut the rest
the stacke Larger siz * 2005	d version are e is due to old	a is 2x bigger I process Ised 350 nm f	than Flash or FeRAM	e wonder abo	ut the rest
the stacke Larger siz * 2005 * 2006	d version are e is due to olo 5 Fujitsu line u	a is 2x bigger I process Ised 350 nm f Ih process in	than Flash or FeRAM 60 nm	e wonder abo	ut the rest

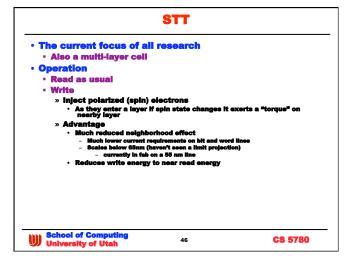

38

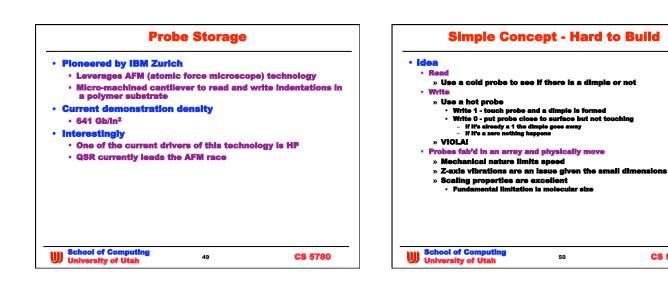

CS 5780

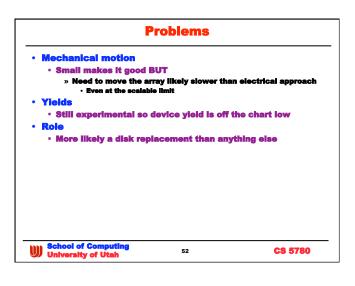

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><section-header><section-header><text>

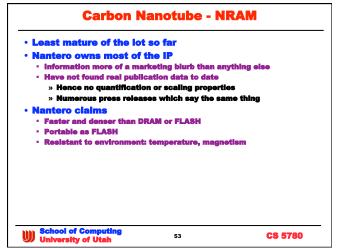

5	Opera	ation & Issu	es
compensates for op under investigation rather than 1T jit's not clear if	Destructive read (like Write a 1: if 0 the revers Detected by sense amp Wear out mechanism Imprinting - tendency to tendehormood issue Scaling Has scaled with Moore's Issues Less dense than FLASH But with a longer future Need for a constant vol » Potential problem du	al generates a small prefer one state if h s Law as feature size 7 TBD lage reference ==> c:	current eld there for a long time shrinks olumn overhead
CS 5780	School of Computing University of Utah	40	C\$ 5780

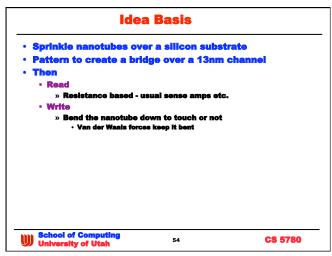

School of Computing University of Utah

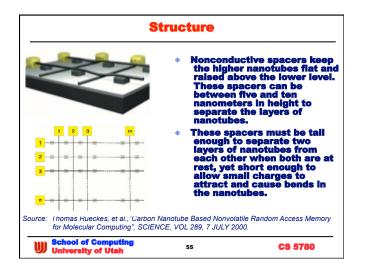


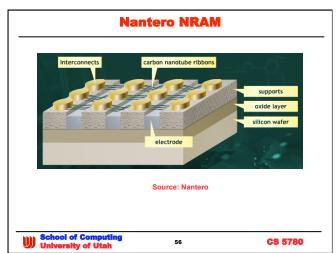


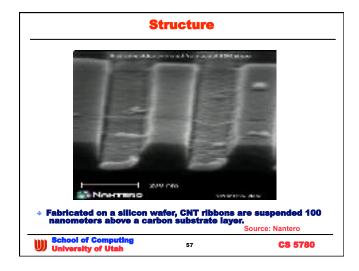




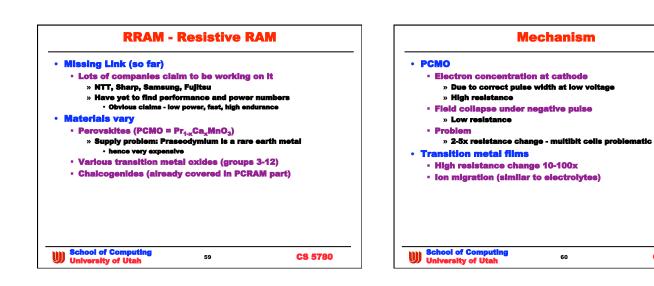


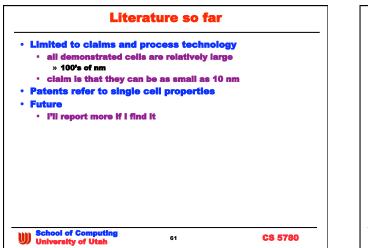












Limit Multi-bit capable	voltage Yes	high voltage Yes	ONO oxide	Fe-Cap No	Density No	Lithograpy Yes	None	? No
Relative cost/bit	Medium	Low	Low	High	High	Medium	Very Low	2
Maturity	Very High	Very High	Medium	Medium	High	Low	Very Low	Lowes
School School	ol of Co ersity o	o <mark>mputing</mark> f Utah		62			CS 578	0

Synopsis

destructive read

80 ns

NA poor >10^14/inf

30 ns

30 ns

30 ns poor Probe AFM-base 0.4 (no litho)

> 2-20 ms 1-1 ms see

<1ms/bit .1-1 ms seek

10^12/inf 0^5-10^12/10^7-ir

150ns <1ms/bit good very good

60 ns

10 ns

NRAM 1 channel

?

?

?

?

 NOR Flash
 Nand Flash
 SONOS
 FeRAM
 MRAM
 PCRAM

 11
 1T
 1T
 1T/1C
 1T/1R
 1T/1R

 10
 4-5
 6
 30-100
 30-50
 8-16

10^7-10^8/inf 10^12/10^12 40+80ns

250 us

9 ms good

10^6/inf

60 ns/serial

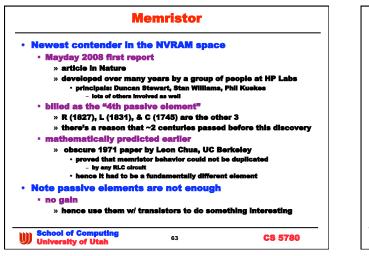
200 us/page

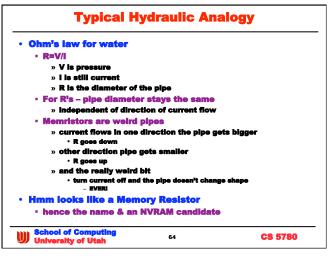
1s/sector 2 ms/block fair fair

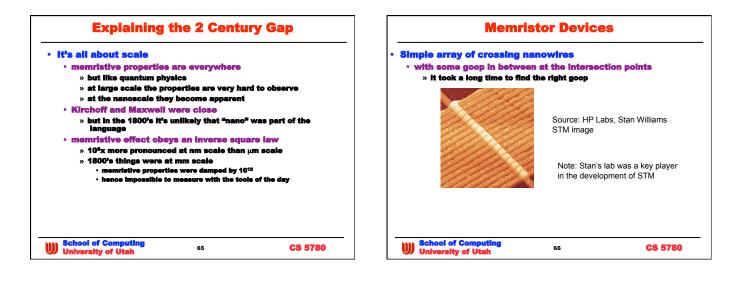
10^6/inf

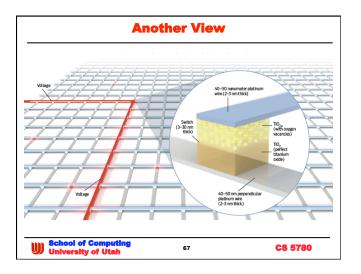
60 ns

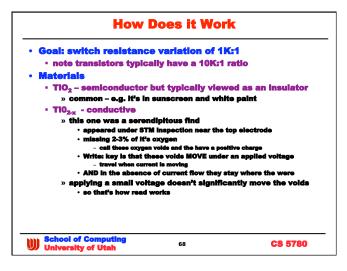
1 us

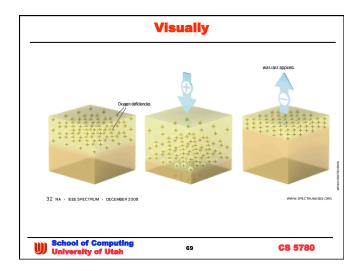

Cell Type Cell Size F^{A2} Endurance W/R

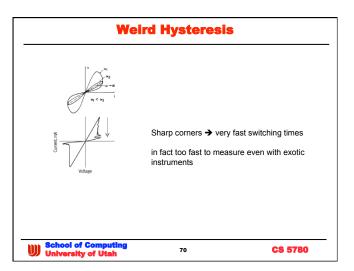

Read Time

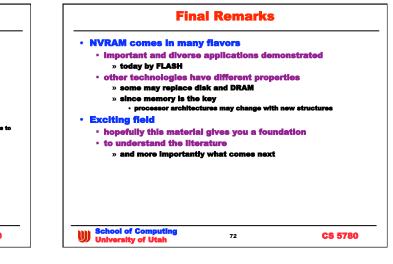

(random) Write Time


(byte) Erase time


(byte) Scalability







Memristor Comments				
• Chua's finding				
 It takes 15 transistors to 	o mimic a memristo	rs behavlor		
 Stan's speculation 				
 memristor will revolutio 	nize circuit design			
 final comment is worth 	reading			
 the rest is history killer app for memristo 	ough he didn't mention tha	t) w deciding what EE courses to		
Bottom line				
 there is some secret sa manufactured on today » properties even more i 	's equipment			
 ramp to date has been ability to logic function 		-		
Definitely one to watch				
School of Computing	71	CS 5780		

