CS/ECE 6780/5780

Al Davis

Today's topics:

· Relays & Motors

·prelude to 5780 Lab 9

CS 5780

Relays

- Common embedded system problem
 - digital control: relatively small I & V levels
 - controlled device requires significantly higher power
- Solution
 - amplify the control power
 - use the control signal to activate a switch
 - » switch turns on/off bigger power source
- Electrically controlled switches
 - transistor
 - » can be used as a switch but it's really an amplifier since it has gain
 - MOS voltage controlled, BIPOLAR current controlled
 - relay
 - » control induces magnetic field in coil
 - » magnetic field moves a mechanical switch
 - bounce problem?
 - usually not a concern for outputs to non-digital gizmos like motors

2

Poles and Throws

- Terminology used for switches
 - relay is just an electrically controlled switch
 - » pole controlled
 - » throw contact point
 - » relay difference magnetic movement of pole
 - difference in where the switch is when switch/magnet is off
 - off state usually controlled by a spring

Single pole Single throw Normally open

Single pole Single throw Normally closed

Single pole Double throw

Single pole Double throw

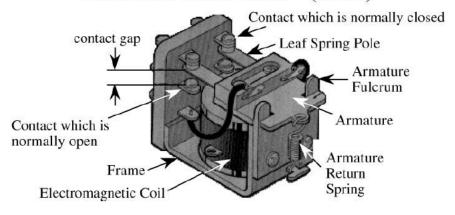
Double pole Double throw

3

CS 5780

Relay Types

- Basic issue is size
 - control power
 - » reed relays smallish power
 - · common in ES designs
 - » general purpose large'ish power
 - you have lots of them in your car

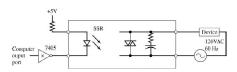


School of Computing
University of Utah

4

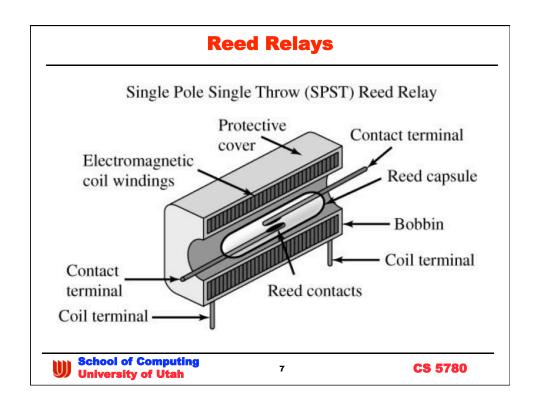
Mechanical DPDT Illustrated

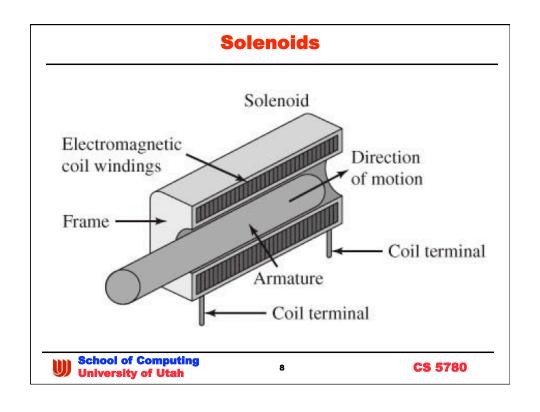
Double Pole Double Throw (DPDT)


School of Computing
University of Utah

CS 5780

Solid State Relays


5

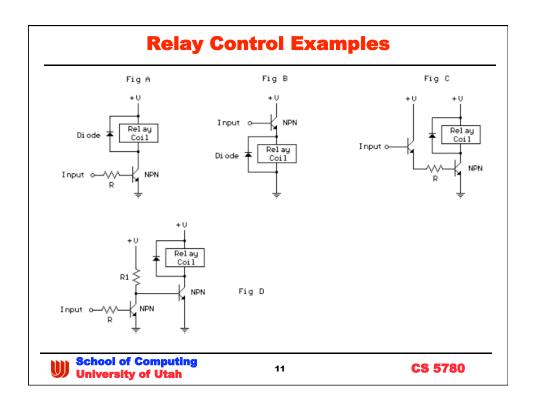

- Improvement on mechanical relay problems
 - contact bounce and arcing limit lifetime
 - sensitive to vibrations, EMI issues
 - slow movement of large mechanical pole
- Optocoupler
 - provides electrical isolation between input (pseudocoil) and output triac (pseudocontact)
 - » particularly important in driving large inductive loads
 - zero-voltage detector triggers triac
 - » reduces surge currents when triac is switched
 - once triggered
 - » triac conducts until next zero crossing

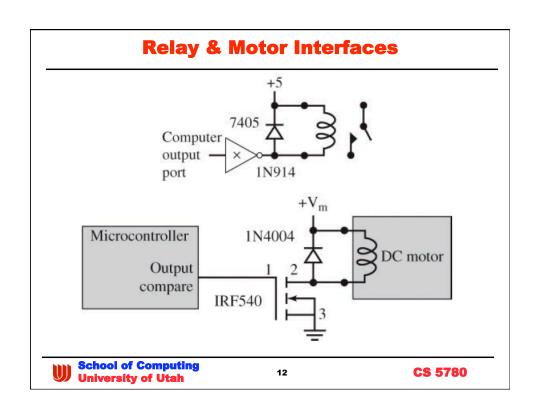
School of Computing University of Utah

6

Interfacing to Inductive Loads

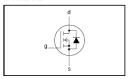
- Interface circuit
 - must provide sufficient current and voltage to activate the device
 - » common error
 - "my microcontroller puts out 5v but at the device it's only 200 mV"
 - what's the problem?

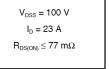

CS 5780


Interfacing to Inductive Loads

- Interface circuit
 - must provide sufficient current and voltage to activate the device
 - » common error
 - "my microcontroller puts out 5v but at the device it's only 200 mV"
 - what's the problem?
 - · Ohm's law
 - current, impedance and voltage are related
 - microcontroller can't provide enough current so voltage is similarly low
 - in off state current should be zero
 - BEWARE
 - » large L → huge back EMF when coil is turned off
 - · fast digital switch causes large di/dt
 - 50 200V back is common
 - » it will destroy your controller
 - ullet isolation or buffering is required
 - optolsolator
 - or snub dlode
 - etc.

10

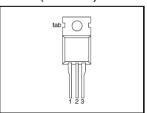




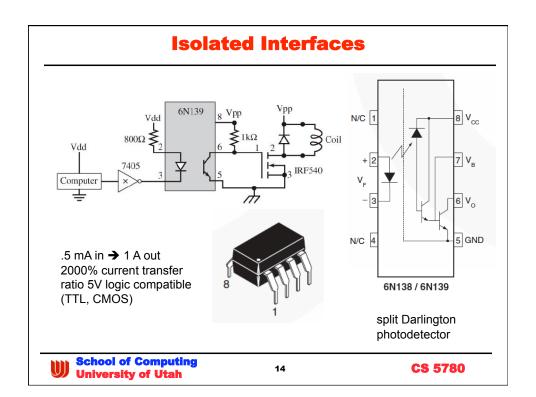
IRF 540 Power Transistor

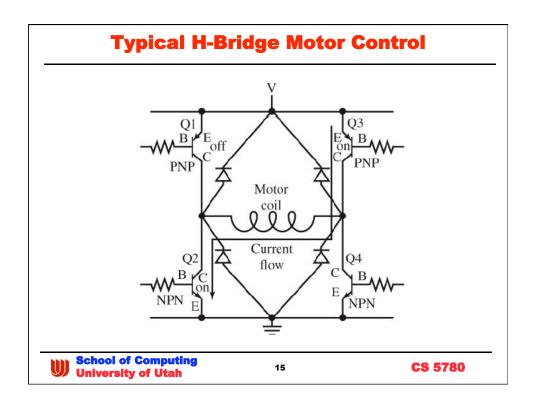
SYMBOL

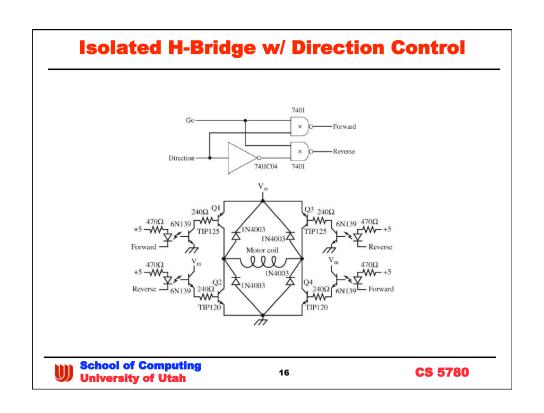
QUICK REFERENCE DATA



PINNING


PIN	DESCRIPTION
1	gate
2	drain¹
3	source
tab	drain

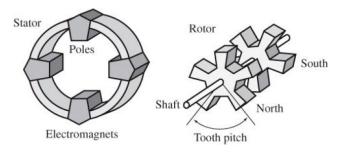

SOT78 (TO220AB)



13

Stepper Motors

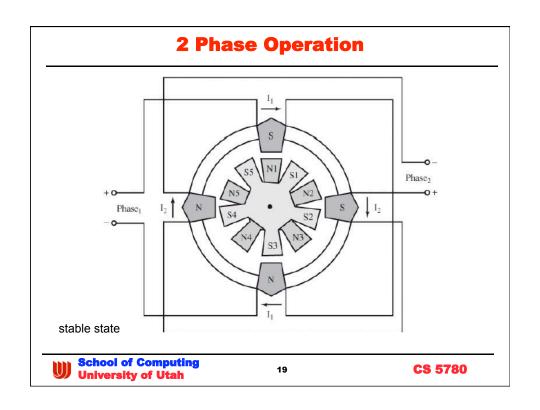
- Popular due to inherent digital interface
 - easy to control both position and velocity in an open-loop fashion
 - more expensive than simple DC motor
 - » still not too bad since may not require feedback sensors
 - can be used as shaft encoders
 - » measure both position and speed

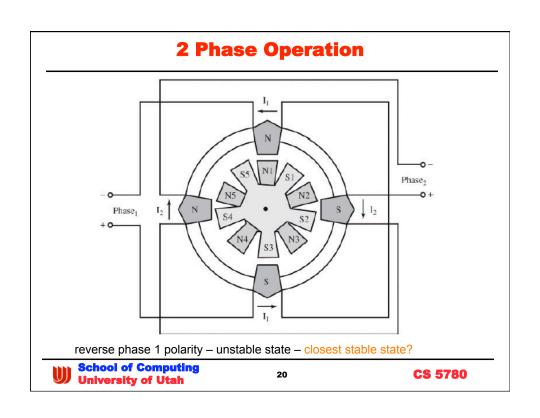

School of Computing University of Utah

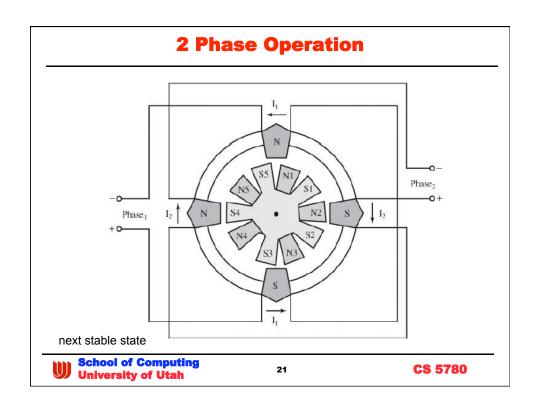
CS 5780

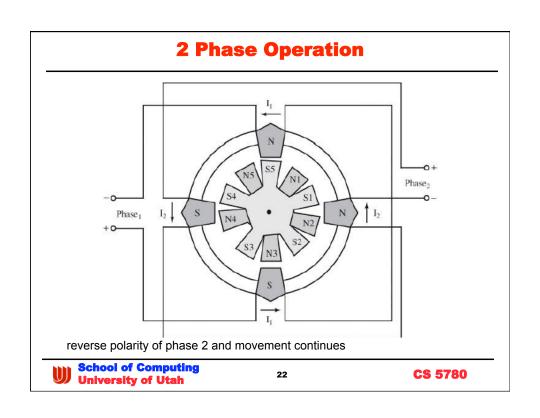
Stepper Motor Basics

17

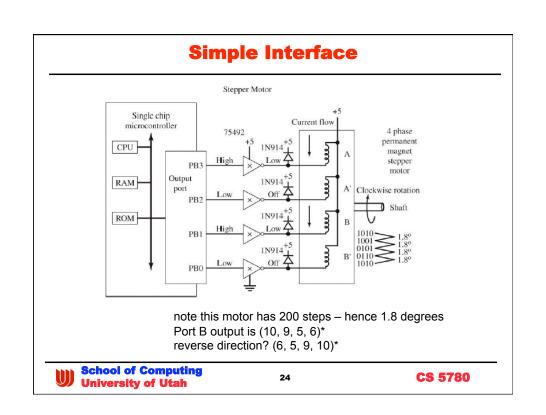

- Stator
 - stationary frame with electromagnet poles
- Rotor
 - teeth are permanent magnets alternating south and north pole teeth

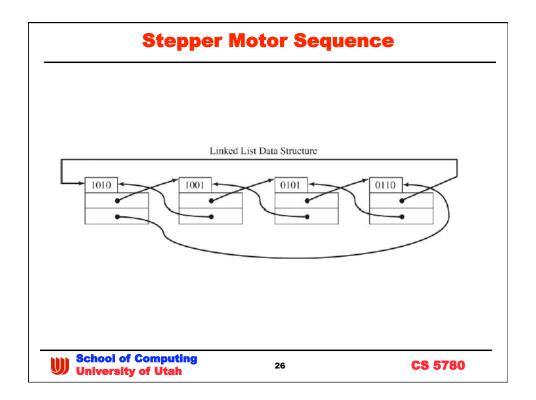



360 degrees/(4 poles * 5 teeth) = 18 degrees per step


School of Computing University of Utah

18





Slip & Torque Issues

- Slip
 - command issued but motor doesn't move
 - · causes
 - » motor torque insufficient to drive mechanical load
 - » or if computer change is too fast
 - → magnetic field is too weak
- IF no slip can be guaranteed
 - then computer knows the shaft position
 - » and doesn't need a sensor

25

Control Data Structures (FSM)

```
const struct State{
                               // Output
 unsigned char Out;
 const struct State *Next[2]; // CW/CCW
typedef struct State StateType;
typedef StateType *StatePtr;
#define clockwise 0
                            // Next index
#define counterclockwise 1 // Next index
StateType fsm[4]={
\{10, \{\&fsm[1], \&fsm[3]\}\},\
\{9, \{\&fsm[2], \&fsm[0]\}\},\
{ 5, {&fsm[3], &fsm[1]}},
{ 6,{&fsm[0],&fsm[2]}}};
unsigned char Pos; // between 0 and 199
                    // Current State
StatePtr Pt;
```

School of Computing University of Utah

27

CS 5780

Init Ritual

```
void Init(void){
  Pos = 0;
  Pt = &fsm[0];
  DDRB = 0xFF;
}
```

School of Computing University of Utah

28

Helper Functions

```
void CW(void){
 Pt = Pt->Next[clockwise]; // circular
 PORTB = Pt->Out;
                          // step motor
 if(Pos==199){
                         // shaft angle
   Pos = 0;
                          // reset
 }else{
                           // CW
   Pos++;}}
void CCW(void){
 Pt = Pt->Next[counterclockwise];
 PORTB = Pt->Out; // step motor
 if(Pos==0){
                         // shaft angle
   Pos = 199;
                          // reset
 }else{
   Pos--;}}
                           // CCW
```

School of Computing University of Utah

29

CS 5780

High Level Control

```
void Seek(unsigned char desired){
short CWsteps;
if((CWsteps=desired-Pos)<0){
    CWsteps+=200;
} // CW steps is 0 to 199
if(CWsteps>100){
    while(desired!=Pos){
        CCW();
    }
}
else{
    while(desired!=Pos){
        CW();
    }
}
}
```

School of Computing University of Utah

30

Concluding Remarks

- Lots of types of electrical motors
 - stepper & DC are most common in inexpensive ES's
- Beware when driving inductive loads
 - back EMF has to be controlled
 - » snub diode is cheap
 - » optical isolation is even more secure
- 5780 students
 - lab 9 will get you provide an introduction
 - stepper motor kits available for checkout

31