CS/ECE 6780/5780
Al Davis

Today’s topics:
* Last lecture
- general serial 1/0 concepts

* more specifics on asynchronous SCI protocol
*Today

*specifics of synchronous SPI

-details of the SCI programming ritual

School of Computing .
University of Utah

V)

CS 5780

Synchronous = SPI (3 options)

Two devices communicating with SCI operate at same
frequency but have 2 separate (not synchronized) clocks.
Two devices communicating with SPI operate using the same
(synchronized) clock.

Master device creates the clock while slave device(s) use the
clock to latch data in or out.

U)

School of Computing

University of Utah 2 CS 5780

SPI Master/Slave Example

9512C32 pins Microcomputer Inierface logic Microcomputer
SS’ on PM3 SP1 o Enable s SPL
SCK on PM5 SPDR_MISO| < Daa__ MISO
MOSI on PM4 Sos] b 3@
MISO on PM2 Maser SCK-D——"—{1 =t ek Slave
GNL SND
T R iy R
Sk |
Data B; B
A =]l
trpst 1 \ tRDH !
Data

School of Computing 3
University of Utah

V)

CS 5780

SPI Fundamentals

Motorola SPI includes four 1/O lines:
SS - slave select, used by master to indicate the channel is
active.
SCK - 50% duty cycle clock generated by the master.
MOSI (master-out slave-in) - data line driven by master.
MISO (master-in slave-out) - data line driven by slave.
Transmitting device uses one edge of clock to change data,
and receiving device uses other edge to accept data.
When data transfer occurs combined 16-bit register is serially
shifted eight bit positions (data exchanged).

SPDR: 8-bit register but linked to form a distributed
16-bit register

V)

School of Computing

Unlversity of Utah 4 CS 5780

Page 1

More SPI Fundamentals

Common control features of the SPl module include:

SPI Pseudo Code

TRANSMIT Set n=7 Bit counter

TLOOP On fall of Sck, set Data=bn Output bit
A baud rate control register Set n=n-1
A mode bit in the‘ control register to select master versus Goto TLOOP if n>=0
slave, clock polarity, clock phase. Set Data=1 Idle output
Interrupt arm bit P
Ability t ke output: -drain.
c ity to ’"ab_e °: p”hs °Sp;r|' 'a:i" e include: RECEIVE Set n=7 Bit counter
ommon status bits for the module include: RLOOP On rise of Sck, read data
SPIF, transmission complete Set bn=Data Input bit
WCOL, write collision Set n=n-1
MODF, mode fault Goto RLOOP if n>=0
Mode fault occurs when master and slave synchronization
is wrong — e.g. 2 masters
School of Computing School of Computing
W) university of Utah s Cs 5780 W) university of Utah e Cs 5780
SPI Modes 9812C32 SPI Details (Port M)

CPOL=0.CPHA=0 g0y

MOMssice o SOxSlave)]2

Mi(Master) or SI(Slave)

CPOL sets SCLK polarity - e.g.
what is IDLE

CPOL=1, CPHA=0

SCLK \
Mi(Mastcs) o SliSlave) %
LER DA E

MOMstr) o SC
ss |

CPOL=0.CPHA=1 g0y \)

for the receiver shift register

Note data transfer is simultaneous
YR X (~ exchange of data:
X000 Wi Master SPDR = Slave SPDR

2 W

)

S8

1 ‘ Il
CPOL=1,CPHAS 5o) A C Slave SPDR > Master SPDR
MOMase) o SOSlve) D%%@ X W‘&[
Mi(Master) o SI(Slave) DO B ER D ()

ss.

School of Computing

Unlversity of Utah CS 5780

V)

CPHA sets even or odd clock edges

Uses four pins, PM3 =SS, PM5 = SCLK, PM4 = MOSI,
and PM2 = MISO.
If 6812 is master, set DDRM to make PM5, PM4, and PM3

outputs.
Can be in run, wait, or stop mode.
4 MHz 24 MHz
SPR2_ SPR1_SPRO Div Freq Bit Time Freq Bit Time
0 0 0 2 2 MHz 500ns 12MHz 833 ns
0 0 1 4 1 MHz 1pus 6 MHz 166.7 ns
0 1 0 8 500 kHz 2 pus 3 MHz 3333 ns
0 1 1 16 250 kHz 4 ps 1.5 MHz 666.7 ns
1 0 0 32 125 MHz 8 us 750 kHz 133 pus
1 0 1 64 62.5 kHz 16 us 375 kHz 2.67 ps
1 1 0 128 31.25 kHz 32 pus 187.5 kHz 5.33 us
1 1 1 256 15.625kHz 64 us 93.75 kHz 10.67 ps

SPIBR register::= SPI Bit Rate register
note weird divisor: 25PR*1 = 2SPR*2

School of Computing

Unlversity of Utah CS 5780

U]}

Page 2

Run/Wait/Stop Modes

* Run - normal operation
¢ Wait - low power mode
If SPISWAI (SPICR2[1]) Is clear — same as run mode
If SPISWAI Is set - walt and clock generator Is turned off
if master
» any transmission stops if SPISWAI Is set
» resumes when SPISWAI is cleared
If slave
» to
* Stop
= annoying — have yet to find how to set this mode
» bonus points If someone can point me to the right answer
= = SPI inactive - consumes even less power

In synch with master

!”J School of Computing

University of Utah 9 CS 5780

SPI Control Registers

SPIDR is 8-bit register used for both input and output.
SPICR1 register species SPI mode of operation.
SPE: enables the SPI system. bit7
SPIE: arms interrupts on the SPIF flag. bit 6
SPTIE: arms interrupts on the SPTEF flag. bit 5
LSBF: if 1 transmits least significant bit first. bit 0
SPISR register contains flags for the SPI system.
SPIF: indicates that new data is available to be read.
SPTEF: indicates that SPI data register can accept new data.
MODF: mode error interrupt status flag.

see table 7.15 in the text for full layout of controls

!DJ School of Computing

University of Utah 10 CS 5780

SPI Bidirectional Mode

Master mode (MSTR=1) Slave mode (MSTR=0)
Nofial Serial out—J> MO iy || Serial in[«——SL_pus
ot SPI DDRMA4 SPI .
SPCO=0 Serial inf~———ML_py12 Serial out S0 PM2
DDRM?2
Bid:ff‘]i""“l Serial out jmmpm.x Serial in -PM4
ode
] SPI BIDIROE SPI SOSI
SPCo=1 Serial in ~PM2 Serial out PM2
BIDIROE
SPCO = SPICR2[0]
BIDIROE = SPICR2[3]
School of Computing
U} Unlversity of Utah " Cs 5780

SPI Mode Selections

MODFEN SSOE Master Mode (MSTR=1)
0 0 PM3 not used with SPI

0 1 PM3 not used with SPI

1 0 PM3 is S5 input w/MODF
1 1 PM3 is SS output

Slave Mode (MSTR=0)
PM3 is SS input
PM3 is S5 input
PM3 is SS input
PM3 is SS input

Pin Mode MSTR SPCO BIDIROE MISO MOSI
Normal 1 0 X Master In Master Out
Bidirectional 1 1 0 MISO not used Master In
1 Master 1/0
Normal 0 0 X Slave Out Slave In
Bidirectional 0 1 0 Slave In MOSI not used
1 Slave 1/0
School of Computin
W) university of Utah 12 CS 5780

Page 3

NOTE

* SPI discussion is incomplete

= intent was to pr t g I sch
= without too much hair
» which you won't b yway unl there is a lab

assoclated with It
» lab 8 uses SCI

+ would be fun to do a 2™ lab with SPI but It's not clear that doing
both would be that Instructive

* Onto the SCI configuration & ritual
= material found all over the place
» text 346-349

» Chap. 13 of the MC9812C Family Reference Manual
« starts on page 383

!”J School of Computing

University of Utah 13 CS 5780

SCI Terminology

* Character based
= 3 types of characters
» Break
« all loglc 0’s, with no start, stop, or parity bits
» Idle
« all logic 1’s, with not start, stop, or parity bits
* Remember SCI frame
= start bit
= 7 or 8 data bits
= parity bit - even or odd selectable
= 1 or 2 stop bits
* Protocol

= preamble - start with Idle character that begins first
transmission

= then send the real data

!'JJ School of Computing

University of Utah 14 CS 5780

SCIBD Configuration

* SCIBD reglster sets the baud rate
= 16 bit register
» only bottom 13 bits are used
* SCI baud rate = Mclk/(16*SCIBD_value)
= note yet another divisor model
= ch to tch industry standards
» note lower order 4 bits could have been 0
* but that would require a 17 bit register since 13 are used
» confusing?
+ sure but welcome to the world of domaln specific hardware
* e.g. embedded microcontrollers

- not all are quite as “speclal cased” as the 6810 varlants however
- R4000 Is a much more regular design for example

* Need 9600 baud?
= set SCIBD to 26 decimal

mj School of Computing 15 CS 5780

University of Utah

SCI Registers

* 2 control registers
= SCICR1[LOOPS,SWAI,RSRC,M, WAKE,ILT,PE,PT]
= SCICR2[TIE,TCIE,RIE,ILIE,TE,RE,RWU,SBK]
» detalls next slides
* 2 status registers
= SCISR1[TDRE,TC,RDRF,IDLE,OR,NF,FE,PF]
= SCISR2[0,0,0,0,0,BRK13,TXDIR,RAF]
* 2 data registers for high and low byte
= SCIDRH[RS,T8,0,0,0,0,0,0]
* SCIDRL[R7T7, R6TS, ... , ROTO]

mj School of Computing 16 CS 5780

University of Utah

Page 4

SCICR1 Configuration

Bit 0 - Parity Type (PT)
0 - Even parity
1 - Odd parity
Bit 1 - Parity Enable (PE)
0 - Disable parity
1 - Enable parity
Bit 2 - Idle Line Type (ILT)
0 - Idle character bit count begins after start bit
1 - Idle character bit count begins after stop bit
Bit 3 - Wakeup Condition (WAKE)
0 - Idle line (idle condition on RxD) wakeup
1 - Address mark (1 in MSB of a received char) wakeup

!”J School of Computing

University of Utah 17 CS 5780

More SCICR1 Configuration

Bit 4 - Data Format (M)
0 - 1 start bit, 8 data bits, 1 stop bit
1 - 1 start bit, 9 data bits, 1 stop bit
Bit 5 - Receiver Source (RSRC)
0 - Internal receiver to transmitter connection
1 - External receiver to transmitter connection (via the TxD
pin)
Bit 6 - SCI Stop in Wait Mode (SCISWAI)
0 - SCI enabled in wait mode
1 - SCI disabled in wait mode
Bit 7 - Loop Select (LOOPS)
0 - Normal operation
1 - Loop operation (SCI received section is disconnected from
the RxD pin allowing the RxD pin to be used for GPIO.)

!DJ School of Computing

University of Utah 18 CS 5780

SCICR2 Configuration

Bit 0 - Send Break (SBK)
0 - No break characters
1 - Transmit break characters
Bit 1 - Receiver Wakeup (RWU)
0 - Normal operation
1 - Enables wakeup and inhibits receiver interrupts.
Bit 2 - Receiver Enable (RE)
0 - Disabled
1 - Enabled
Bit 3 - Transmitter Enable (TE)
0 - Disabled
1 - Enabled

mj School of Computing

Unlversity of Utah 19 CS 5780

More SCICR2 Configuration

Bit 4 - Idle Line Interrupt Enable (ILIE)
0 - IDLE interrupts disabled
1 - IDLE interrupts enabled
Bit 5 - Receiver Full Interrupt Enable (RIE)
0 - RDRF and OR interrupts disabled
1 - RDRF and OR interrupts enabled
Bit 6 - Transmission Complete Interrupt Enable (TCIE)
0 - TC interrupts disabled
1 - TC interrupts enabled
Bit 7 - Transmitter Interrupt Enable (TIE)

0 - TDRE interrupts disabled
1 - TDRE interrupts enabled

OR signals overrun (next byte ready to be received from the Rx shift register but
the SCDR is already full — buffer overrun)

RDRF - signals receive data register full

mj School of Computing

Unlversity of Utah 20 CS 5780

Page 5

SCISR1 Configuration

Bit 0 - Parity Error (PF)
0 - No parity error
1 - Parity error
Clear PF by reading SCISR1 followed by SCIDRL. Doesn't
get set in case of OR.
Bit 1 - Framing Error (FE)
0 - No framing error
1 - Framing error
Clear FE by reading SCISR1 with FE set followed by SCIDRL.
Doesn't get set in the case of OR. When sets prohibits
further data reception.
Bit 2 - Noise Flag (NF) each bit is 3x oversampled — noise if they vary
0 - No noise
1 - Noise
Clear NF by reading SCISR1 followed by SCIDRL. Doesn't
get set in the case of OR.

no stop bit detected

!”J School of Computing

University of Utah 2 CS 5780

More SCISR1 Configuration

Bit 3 - Overrun (OR)
0 - No overrun
1 - Overrun
Incoming data is lost, but the current data is intact. Clear
OR by reading SCISR1 with OR set followed by SCIDRL.
Bit 4 - Idle Line (IDLE)
0 - Receiver input is active or has never become active since
last IDLE flag clear
1 - Receiver input is idle
Clear IDLE flag by reading SCISR1 with IDLE set followed by
SCIDRL.
Bit 5 - Receive Data Register Full (RDRF)
0 - Data not available in SCI data register
1 - Received data available in SCI data register
Clear RDRF by reading SCISR1 with RDRF set followed by
SCIDRL.

!DJ School of Computing

University of Utah 22 CS 5780

Even More SCISR1 Configuration

Bit 6 - Transmit Complete (TC)
0 - Transmission in progress
1 - No transmission in progress
Clear TC by reading SCISR1 with TC set then writing to
SCIDRL. TC is set when the TDRE flag is set and no data,
preamble, or break character is being transmitted.

Bit 7 - Transmit Data Register Empty (TDRE)
0 - No byte transferred to the transmit shift register
1 - Byte transferred to transmit shift register
Clear TDRE by reading SCISR1 with TDRE set followed by
writing to SCIDRL.

mj School of Computing 23 CS 5780

University of Utah

SCISR2 Configuration

Bit 0 - Receiver Active (RAF)
0 - No reception in progress
1 - Reception in progress
Bit 1 - Transmitter Pin Data Direction in Single-Wire Mode
(TXDIR)
0 - TxD pin used as an input in Single-Wire mode
1 - TxD pin used as an output in Single-Wire mode
Bit 2 - Break Transmit Character Length (BK13)
0 - Break character is 10 or 11 bits long
1 - Break character is 13 or 14 bits long

mj School of Computing 24 CS 5780

University of Utah

Page 6

More SCISR2 Configuration

Bit 0 - Receiver Active (RAF)
0 - No reception in progress
1 - Reception in progress
Bit 1 - Transmitter Pin Data Direction in Single-Wire Mode
(TXDIR)
0 - TxD pin used as an input in Single-Wire mode
1 - TxD pin used as an output in Single-Wire mode
Bit 2 - Break Transmit Character Length (BK13)
0 - Break character is 10 or 11 bits long
1 - Break character is 13 or 14 bits long

School of Computing

V)

SCI Data Register Configuration

SCIDRL is used for bits 0-7 for transmit and receive.
SCIDRH bit 6 is the ninth data bit transmitted when in 9-bit
mode.

SCIDRH bit 7 is the ninth data bit received when in 9-bit
mode.

When running in 9-bit mode access SCIDRH before SCIDRL.

School of Computing

University of Utah 28 Cs 5780 W) university of Utah 28 CSs 5780
Finally Some Code SCI Transmit Ritual
* SCI Initlalizatlon example * Note somewhat strange - TDRE Is SCISR1[7]
= what’s missing?
SCIBD = 26; //9600 baud Check for TDRE by reading SCISR1.
SCICR1 = 0x00; //no parity, 8 data bits, normal operation Write data to SCIDRL.
SCICR2 = 0x2C; //receiver & transmitter enable,)
//RDRF interrupt enable if (SCISR1 & TDRE) {
SCIDRL = data;
}
School of Computing School of Computing
W university of utah = €8 5780 W) university of Utah e Cs 5780

Page 7

SCI Transmit Ritual

* Note somewhat strange - TDRE is SCISR1[7]
= what’s missing?
» TDRE Isn’t defined - It’s a bit position
» hence
« #define TDRE 0x80
Check for TDRE by reading SCISR1.

Write data to SCIDRL.

if (SCISR1 & TDRE) {

SCISR1 Receive Ritual

* Similar situtation
= RDRF = SCISR1[5]
» simllar deal
» need #define RDRF 0x20

Check for RDRF by reading SCISR1.
Read data from SCIDRL.

if (SCISR1 & RDRF) {

SCIDRL = data: data = SCIDRL;
} ’ ¥
School of Computing School of Computing
W) university of Utah 2 Cs 5780 W) university of Utah 30 CS 5780
SCI Initialization SCI Initialization
#define TDRE 0x80 X i .
#define RDRF 0x20 void SCI_Init(void){
#define TXINT 0x80 asm sel)
void SCI_Init(void){ RxFifo_Init(); // empty FIFOs
asm sei TxFifo_Init();
RxFifo_Init(); // empty FIFOs SCIBD = 52; // 9600 b1ts/s§c
TxFifo_Init(): SCICR1 = 0; // M=0, no parity
SCIBD = 52: // 9600 bits/sec SCICR2 = 0x2C; // enable, arm RDRF
SCICRI = Ot // M=0, no parity asm cli // enable interrupts
SCICR2 = 0x2C; // enable, arm RDRF ¥
asm cli // enable interrupts * Remember (1 error, & crappy comments)
Weakne];ses or Errors? SCIBD = 26; //9600 baud
SCICR1 = 0x00; //no parity, 8 data bits, normal operation
SCICR2 = 0x2C; //receiver & transmitter enable,
//RDRF interrupt enable
ik o W S ca e

University of Utah 32

Page 8

SCI Interface ISR

// RDRF set on new receive data
// TDRE set on empty transmit register
interrupt 20 void SciHandler(void){
char data;
if (SCISR1 & RDRF){
RxFifo_Put(SCIDRL); // clears RDRF
}
if ((SCICR2&TXINT)&& (SCISR1&TDRE)) {
if (TxFifo_Get (&data)){
SCIDRL = data; // clears TDRE
}
else{
SCICR2 = 0x2c;
}
}
}

// disarm TDRE

School of Computing

University of Utah CS 5780

V)

33

SCI In/Out Character

// Input ASCII character from SCI

// spin if RxFifo is empty

char SCI_InChar(void){ char letter;
while (RxFifo_Get(&letter) == 0){};
return(letter);

}

// Output ASCII character to

// spin if TxFifo is full

void SCI_OutChar(char data){
while (TxFifo_Put(data) ==
SCICR2 = O0xAC; // arm TDRE

}

SCI

0){};

School of Computing
University of Utah

U)

34

CS 5780

Concluding Remarks

* Serlal 1/O Is very common
= USB is obviously everywhere
= SPI & SCI are more pr t In
» primarilly because It’s low cost
» most controllers support this
* your kits support both
» difference is synch (SPI) vs. asynch (SCI)
* Too much detall already
= but advise that you take a look at the DAC application
» In prep for Lab 8 If you have any problems with concepts

haddad "

per L4
» heavy on speclfics and light on long-lasting concepts

* mi scores was a bit light on the few
that are

» makes me wonder
« should it be even more labs w/

In the

rather than

School of Computing

University of Utah 38

CS 5780

V)

Page 9

