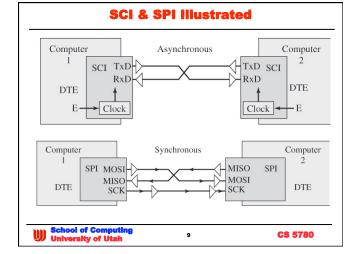
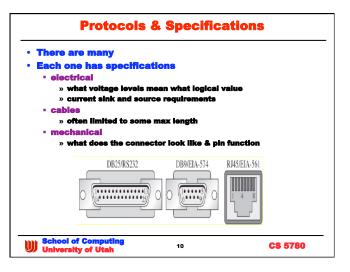
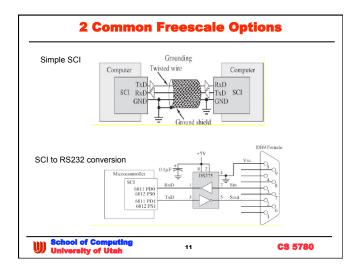
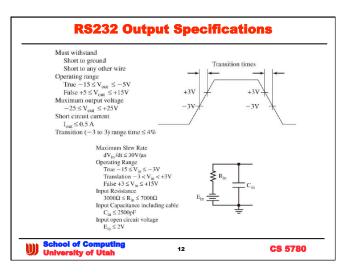
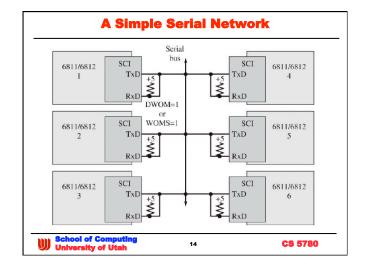

Introduction to Serial I/O

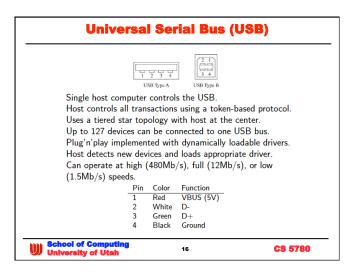


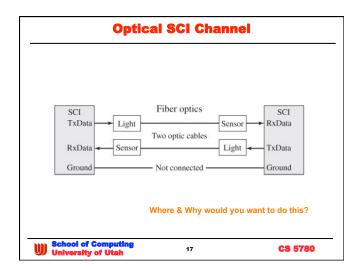


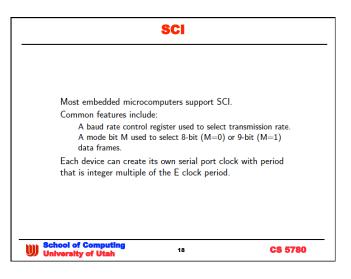


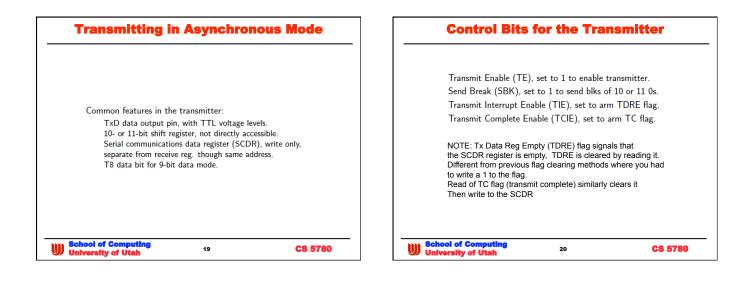


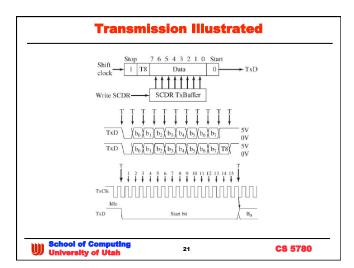


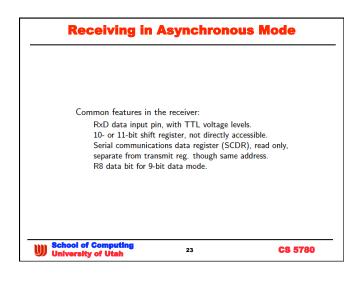


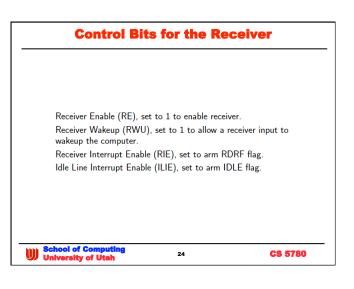



Pin	Signal	Description	True	DTE	DCE
1	DCD	Data Carrier Detect	+12	In	Out
2	RxD	Receive Data	-12	In	Out
3	TxD	Transmit Data	-12	Out	In
4	DTR	Data Terminal Rdy	+12	Out	In
5	SG	Signal Ground			
6	DSR	Data Set Ready	+12	In	Out
7	RTS	Request to Send	+12	Out	In
8	CTS	Clear to Send	+12	In	Out
9	RI	Ring Indicator	+12	In	Out



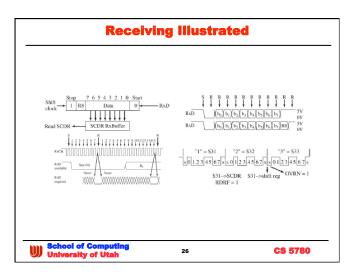

Specification	RS232D	RS423A	RS422	RS485
Mode of operation	Single-ended	Single-ended	Diff.	Diff.
Drivers on one line	1	1	1	32
Receivers on one line	1	10	10	32
Max distance (ft)	50	4,000	4,000	4,000
Max data rate	20kb/s	100kb/s	10Mb/s	10Mb/s
Max driver output	$\pm 25V$	±6V	-0.25/+6V	-7/+12V
Receiver input	$\pm 15V$	$\pm 12V$	$\pm 7V$	-7/+12V
SCI TxData RxData	301 A B A' B'	A' SP: A' B' A B' A		Data



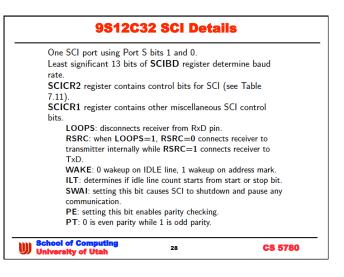


Pseudo Cod	e for	Transmi	ission	Process
------------	-------	---------	--------	---------

TRANSMIT	Set TxD=0		Output start bit
	Wait 16 clock	times	Wait 1 bit time
	Set n=0		Bit counter
TLOOP	Set TxD=bn		Output data bit
	Wait 16 clock	times	Wait 1 bit time
	Set n=n+1		
	Goto TLOOP if	n<=7	
	Set TxD=T8		Output T8 bit
	Wait 16 clock	times	Wait 1 bit time
	Set TxD=1		Output a stop bit
	Wait 16 clock	times	Wait 1 bit time
School of Com University of U		22	CS 5780

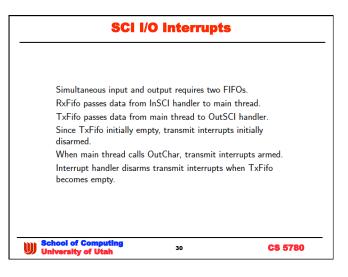


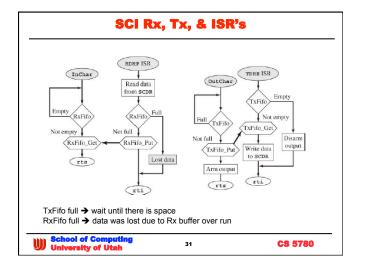
Status Bits Generated by the Receiver

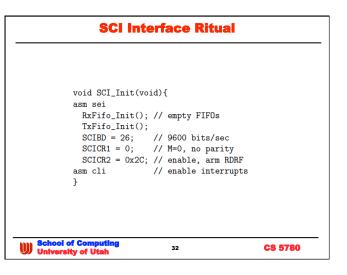

Receive Data Register Full flag (RDRF), set when new data available, clear by reading RDRF and SCDR. Receiver Idle flag (IDLE), set when receiver line is idle, clear by reading IDLE, then reading SCDR. Overrun flag (OR), set when input data lost because previous frame not read, clear by reading OR and SCDR. Noise flag (NF), set when input is noisy, clear by reading NF flag, then reading SCDR. Framing error (FE), set when stop bit is incorrect, clear by reading FE, then reading SCDR. 25

School of Computing University of Utah

CS 5780

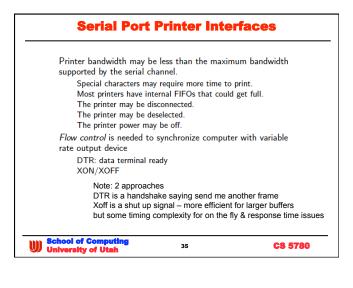


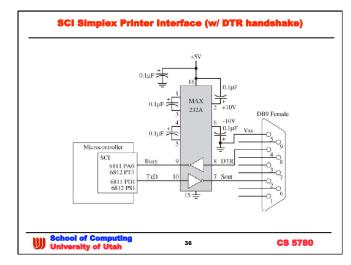

RECEIVE	Goto RECEIVE if RxD=1	Wait for start bit
	Wait 8 clock times	Wait half a bit time
	Goto RECEIVE if RxD=1 Set n=0	False start?
RLOOP	Wait 16 clock times	Wait 1 bit time
	Set bn=RxD	Input data bit
	Set n=n+1	
	Goto RLOOP if n<=7	
	Wait 16 clock times	Wait 1 bit time
	Set R8=RxD	Read R8 bit
	Wait 16 clock times	Wait 1 bit time
	Set FE=1 if RxD=0	Framing error if
		no stop bit
	Hare to ereen ermoo	Framing error if
chool of (niversity	Computing 27	CS 5780



More SCI Details

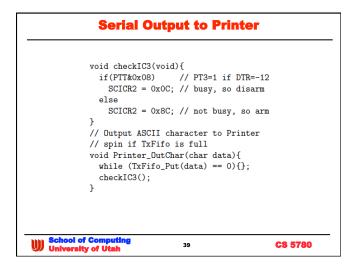
Flags in SCISR1 register can be read but not modified by software. The error conditions are also reported in the SCISR1 register including parity flag, PF, set on parity errors. The SCISR2 register contains two mode control and one status bit. $\ensuremath{\mathsf{BRK13}}\xspace$ break character is 13 or 14 bits when 1 and 10 or 11 bits when 0. TXDIR: specifies direction of the TxD pin in single-wire mode. RAF: 1 when frame is being received. The SCIDRL register contains data transmitted and received. The SCIDRH register contains the 9th data bits. School of Computing University of Utah 29 CS 5780

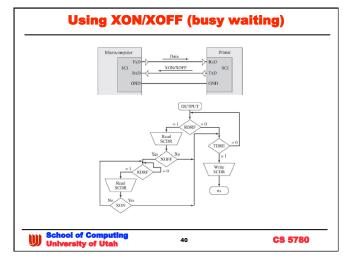


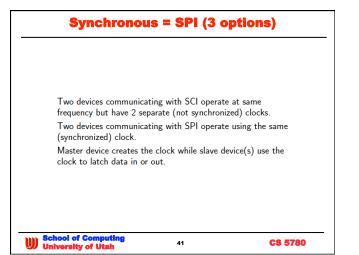


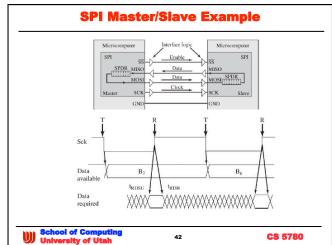
SCI Interface ISR	
// RDRF set on new receive data	
<pre>// TDRE set on empty transmit register</pre>	
<pre>interrupt 20 void SciHandler(void){</pre>	
char data;	
if(SCISR1 & RDRF){	
<pre>RxFifo_Put(SCIDRL); // clears RDRF</pre>	
}	
if((SCICR2&TIE)&&(SCISR1&TDRE)){	
if(TxFifo_Get(&data)){	
SCIDRL = data; // clears TDRE	
}	
else{	
SCICR2 = 0x2c; // disarm TDRE	
}	
}	
}	
School of Computing University of Utah 33	CS 5780

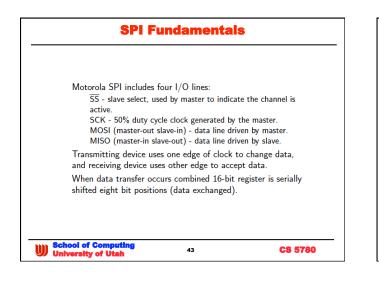
SCI In/Out Character	
// Input ASCII character from SCI	
// spin if RxFifo is empty	
<pre>char SCI_InChar(void){ char letter;</pre>	
<pre>while (RxFifo_Get(&letter) == 0){};</pre>	
return(letter);	
}	
<pre>// Output ASCII character to SCI</pre>	
<pre>// spin if TxFifo is full</pre>	
<pre>void SCI_OutChar(char data){</pre>	
<pre>while (TxFifo_Put(data) == 0){};</pre>	
SCICR2 = 0xAC; // arm TDRE	
}	
School of Computing University of Utah 34	CS 5780

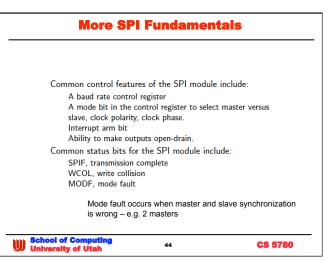


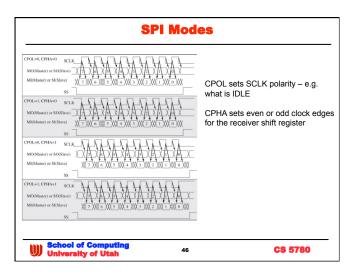


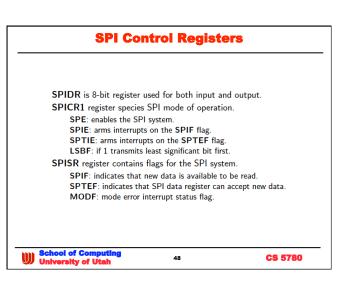

Page 9


Seria	l Out	tput	w /	DTR
--------------	-------	------	------------	-----


DTI	R Handshake ISR	
void inte TFLG1 =	aterrupt on any change of wrrupt 11 IC3Han(void) { = 0x08; // Ack, clear C3F C3(); // Arm SCI if DTR=+1	
School of Computing University of Utah	38	CS 5780







JLI LZENNO CONE	SPI	Pseudo	Code
-----------------	-----	---------------	------

School of Co University o		CS 578 0
RLOOP	On rise of Sck, read data Set bn=Data Set n=n-1 Goto RLOOP if n>=0	Input bit
RECEIVE	Set n=7	Bit counter
ILUUP	Set Data=1 Set Data=1	Output bit Idle output
TRANSMIT TLOOP	Set n=7 On fall of Sck, set Data=bn	Bit counter

				3 = 3	55, PM5 =	= SCLK,	PM4 = N	NOSI,
an	d Pl	M2 =	MISO.					
If (6010		stor s	-+ DI	DRM to r	naka DM		nd DM2
			ster, s			ITAKE FIVE	5, F 1014, a	
ou	tput	s.						
Ca	n he	in ru	n wai	t or	stop mod	•		
Ca	in De	: in Tu	n, wai	L, Or	4 M		24 N	/H-
S	PR2	SPR1	SPR0	Div	Freq	Bit Time	Freq	Bit Time
	0	0	0	2	2 MHz	500 ns	12 MHz	83.3 ns
	0	0	1	4	1 MHz	1 µs	6 MHz	166.7 ns
	0	1	0	8	500 kHz	2 µs	3 MHz	333.3 ns
	0	1	1	16	250 kHz	4 μs	1.5 MHz	
	1	0	0	32	125 MHz	8 µs	750 kHz	1.33 µs
	1	0	1	64	62.5 kHz	16 µs	375 kHz	2.67 µs
	1	1	0	128	31.25 kHz	32 µs	187.5 kHz	5.33 µs
	1	1	1	256	15.625kHz	64 μs	93.75 kHz	10.67 μs
					SPIBR re	egister		
	1	1	1	256			93.75 kHz	10.67 μs
Scho	o lo	f Com ty of U	puting		4	7		CS 578

	Master mode (MSTR=1)	Slave mode (MSTR=0)
Normal mode SPC0=0	Serial out SPI Scrial in Scrial in Scrial in	Serial in SPI Scrial out DDRM2
Bidirectional mode SPC0=1	Serial out SPI Serial in Serial in	Serial in SPI Serial out BIDIROE

MODFEN	SSOE	Master N	Aode (MSTI	R=1) Slave M	ode (MSTR=0)	
0	0	PM3 not	used with SP	I PM3 is S	S input	
0	1	PM3 not	used with SP		PM3 is SS input	
1	0	PM3 is 5	5 input w/M		PM3 is <u>SS</u> input	
1	1	PM3 is 5		PM3 is S		
Pin Mode	MSTR	SPC0	BIDIROE	MISO	MOSI	
Normal	1	0	Х	Master In	Master Out	
Bidirectional	1	1	0	MISO not used	Master In	
			1		Master I/O	
Normal	0	0	Х	Slave Out	Slave In	
Bidirectional	0	1	0	Slave In	MOSI not used	
			1	Slave I/O		
School of C University		ng	50		CS 5780	

Concluding Remarks				
• Serial I/O is very comn	non			
 USB is obviously ever 	ywhere			
 SPI & SCI are more pr 	revalent in embed	ided systems		
» primarily because it				
» most controllers sur				
 your kits support b a difference is synch t 				
• Too much detail airea	•			
• but advise that you ta	· ·	DAC application		
 we'll go through the feature 				
» in prep for Lab 8				
• SPRING BREAK				
 hope you have some f 	fun			
 hope I can catch up 				
School of Computing University of Utah	51	CS 5780		