CS/ECE 6780/5780
Al Davis

Today’s topics:
*Output capture
*Pulse Width Modulation
*Pulse Accumulation

-all useful options for Lab7

School of Computing
!yj University of Utah 1 CS 5780

Output Compare

¢ Basic output control
= create square waves

» including PWM duty cycle controlled pulses
* for motor and actuator controls

Small ﬂ H H H
Middle I I l ‘ I ‘

Large J U U U L

= implement time delays

= can be used w/ input capture to measure frequency
o Similar to input capture

= MC9S12C32 has 8 OC channels/modules

School of Computing
!DJ University of Utah 2 CS 5780

Page 1

Each OC Module

¢ Components
= External output pin - OCn
* Flag bit
* Force output compare control bit - FOCn
= 2 control bits: OMn, OLn
* Interrupt mask bit
= 16-bit output compare register TCn

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

TCNT
OCn
OC reg
Mask Flag FOC OMn OLn
School of Computing
W university of Utah 3 CS 5780

Basic OC Operation

e OCn pin used to control an external device
* OC event occurs and sets the flag when either:
= 16-bit TCNT register matches the 16-bit OC register
= the software writes a 1 to the FOC bit
e OMn & OIn
= specify the effect of the event on the output pin
e 2 or 3 actions possible when an OC evenf happens
= always
» OCn output bit changes
» OC compare FLAG is set
= jf the mask bit is 1
» interrupt is requested
* very similar to the input compare functionality

School of Computing
!”J University of Utah 4 CS 5780

Page 2

Control Bits & Flags

¢ Same as with input capture
= TEN must be set = TSCR1[7] to enable TCNT functions
» TCNT prescale bits must be set = TSCR2[2:0]
= OCn associated with PTT[n]
» TTL level signal
= Mask/Arm bits are in TIE
= Flag bits are in TFLG1
= TOF is in TFLG2[7]
* Differences
= use OCn = TIOS[n]=1
» for input capture TIOS[n]=DDRT[n] =0

» for output compare TIOS[n] = 1 implies output
+ DDRT register value is ignored - no need to set it

= OM & OL for modules 7:4 are in TCTL1

» for modules 3:0 are In TCTL2

» TCTL3 & TCTL4 were used for Edge bits for input capture
= FOCn bits are in CFORC[n] register

School of Computing
!yj University of Utah 5 CS 5780

OM & OL Semantics

OMn OLn Effect of when TOChn=TCNT
0 0 Does not affect OCn
0 1 Toggle OCn
1 0 Clear OCn=0
1 1 Set OCn=1

Grrr — this could have been more intuitive — how?

School of Computing
!w University of Utah 6 CS 5780

Page 3

Example Application

* Create a fixed time delay
1. read current 16-bit TCNT
2. calculate TCNT+fixed
3. set 16-bit TCn register to TCNT+£fixed
4. clear CnF flag = TFLG1[n]
» same semantics as with input capture

» writing a 1 to the flag clears it
¢ OC HW event sets the flag
¢ SW can’t set the flag explicitly

5. wait for the CnF to be set
¢ Note
* similar to the max latency issue w/ input capture

» minimum delay is set by the delay of steps 1-4 above
» maximum TCNT delay is 65,536 = 215 cycles

!DJ School of Computing

University of Utah 7 CS 5780

Periodic Interrupt Using Output Compare

#define PERIOD 1000

unsigned short Time;

void 0C6_Init(void){
asm sei // Make atomic
TSCR1 = 0x80; // Turn on timer

TSCR2 = 0x02; // 1 MHz TCNT
TIOS |= 0x40; // activate 0C6
TIE |= 0x40; // arm 0C6

TC6 = TCNT+50; // first in 50us
Time = 0; // Initialize
asm cli } // enable IRQ

void interrupt 14 0C6handler(void){
TC6 = TC6+PERIOD; // next in 1 ms

TFLG1 = 0x40; // acknowledge C6F
Time++; }
School of Computing
!w University of Utah 8 CS 5780

Page 4

Pulse-Width Modulation (PWM)

High Low

8000 2000 __ | |_ 80% duty cycle
5000 5000 _ | 50% duty cycle
2000 8000 __] 20% duty cycle

School of Computing
!'JJ University of Utah 9 CS 5780

Parameterized PWM Duty Cycle

unsigned short High; // Cycles High
unsigned short Low; // Cycles Low
void Init(void){

asm sei // make atomic

TSCR1 = 0x80; // Turn on timer

TSCR2 = 0x01; // 500 ns clock

TIOS |= 0x08; // enable 0C3

DDRT |= 0x08; // PT3 is output

TIE |= 0x08; // Arm output compare 3
TFLG1 = 0x08; // Initially clear C3F
TCTL2 = (TCTL2&O0x3F) |0x40; // toggle

TC3 = TCNT+50; // first right away

asm cli

School of Computing
!”J University of Utah 10 CS 5780

Page 5

Parameterized PWM Duty Cycle (cont’d)

void interrupt 11 TC3handler (void){

TFLG1 = 0x08; // ack C3F
if (PTT&0x08) { // PT3 is now high
TC3 = TC3+High; // 1 for High cyc
}
else{ // PT3 is now low
TC3 = TC3+Low; // O for Low cycles
}
}

void main(void){
High=8000; Low=2000;
Init();
while(1);

School of Computing
!yj University of Utah " CS 5780

PWM Overhead

o Similar to max latency issue for input capture

* Need
= to figure out the time it takes to process the interrupt
= plus the time to execute the handler

» the if-then-else branch pattern in the handler creates a 1 cycle
uncertainty

» in general you’ll only care about the worst case
 since that will govern your real time schedule

¢ For the previous code:

Component 6812
Process the interrupt (cycles) 9

Execute the handler (cycles) | 27-28
Total time T (cycles) 36-37

School of Computing
!”J University of Utah 12 CS 5780

Page 6

Alternative Frequency Measurement Method

¢ Direct measurement

= count input (rising edge) pulses for a fixed amount of time
» use input capture to count pulses
» use output compare to create a fixed time interval

¢ Output compare handler calculates frequency

B Counter
~ fixed time

* Frequency resolution is:

1
~ fixed time

!DJ School of Computing 13 CS 5780

University of Utah

Alternative Method lllustrated

- ‘ /\/\/\ External
6811 PA2/ICI

Signal
6812 PT1/IC1| TTL-Level
Signal

OCS interrupt OCS interrupt

t A
!

10 ms fixed time interval I

A A L

IC1 IC1 IC1 IC1 IC1 interrupts
Count 0 1 2 3 2] 5

A A A

!”J School of Computing 14 CS 5780

University of Utah

Page 7

Frequency Measurement

#define Rate 20000 // 10 ms
void Init(void) {
asm sei // make atomic
TSCR1 = 0x80; // Turn on timer
TSCR2 = 0x01; // 500 ns clock
TIOS |= 0x20; // enable 0C5
TIE |= 0x22; // Arm 0C5 and IC1
TC5 = TCNT+Rate; // First in 10 ms
TCTL4 = (TCTL4&O0xF3)|0x04; /* C1F set on rising edges */

Count = 0; // Set up for first
Done = 0; // Set on measurements
TFLG1 = 0x22; // clear C5F, CiF

asm cli

This code makes some assumptions — what are they?

!'JJ School of Computing 15 CS 5780

University of Utah

Frequency Measurement (cont’d)

void interrupt 9 TClhandler(void){

Count++; // number of rising edges
TFLG1 = 0x02; // ack, clear CiF
}
void interrupt 13 TC5handler(void){
TFLG1= 0x20; // Acknowledge
TC5 = TC5+Rate; // every 10 ms
Freq = Count; // 100 Hz units
Done = Oxff;
Count = 0; // Setup for next
}

What would main() look like if you wanted to keep sampling?

!”J School of Computing 16 CS 5780

University of Utah

Page 8

More PWM Options

e 6812 has a lot of support for PWM
= pulse accumulator (PA) - 2 modes

» external event counting
* PACNT Is a separate 16-bit event counter
- PAOVF = PAFLG]1] set on overflow
- PAOVI = PACTL[1] - arms Interrupt request on PAOVF
— PAIF = PAFLGIO] - set when selected PT7 event happens
- PAI = PACTL[O] - arms interrupt request on PAIF event
- NOTE PAFLG bits cleared by writing a 1 (similar to other flags)

» gated time accumulation
+ useful for pulse width measurement
= also associated with PTT[7]
* Primary setup using the PACTL register

= PACTL[6] = PAEN
» set to 1 to enable the PA functions

= PACTL[5:4] = PAMOD:PEDGE semantics
» 00 - PT7 falling edge increments PACNT, sets PAIF on falling edge
» 01 - PT7 rising edge increments PACNT, sets PAIF on rising edge
» 10 - gated time, counts when PT7=1, sets PAIF on falling edge
» 11 - gated time, counts when PT7=0, sets PAIF on rising edge

School of Computing
!”J University of Utah 17 CS 5780

Directionality for PA Functions

e PA can work on PT7 events

* independent of DDRT7 direction
» O:input - stimulus comes from external device
» 1:output - stimulus comes from internal device

= nice flexibility option

School of Computing
lDJ University of Utah 18 CS 5780

Page 9

More PWM Options

Dedicated hardware can create PWM signals on Port P
* benefit is no overhead
MODRR register can connect PWM system to Port T pins
= MODRR[n] set connects PTT[n] to PWM system
» n can be 0:4
* PWME register is used to enable PWM channels
= either 6 8-bit channels
= or 3 16-bit channels
» channels 0 & 1 connected if CONO1 bit is set (PWMCTL[4])
« similarly with CON23 = PWMCTL[5]
« and CON45 = PWMCTL[6]
e Each channel has two associated count/duration
controls
= PWMDTY - controls how long output is high
= PWMPER - controls the period

» naming: PWMPERO1 if CONO1 set, PWMPERO & PWMPER1
otherwise

IDJ School of Computing 19 CS 5780

University of Utah

PWM Polarity Control

 PWMPOL register controls polarity
* e.g. whether duty cycle is high vs. low output value

* PPOLx = PWMPOL[x]
» x can be 0:5 assuming 6 8-bit channels
» NOTE if 16 bit channels are used

* I’'m not clear on whether both PPOL bits need to be set
appropriately or whether just one suffices

¢ If anybody tries It let me know the answer
* For now to be safe set both

PWMPER,
~— PWMDTY, —>

| | | . PPOL,=1

PWMPER

- PWMDTY, —

]] | PPOL,=0

!DJ School of Computing 20 CS 5780

University of Utah

Page 10

Clock Choice

¢ Lots of options here

= A & B clocks are scaled down versions of the E clock

» prescale bits are similar to the TCNT prescale
* e.g. 2V where V is the 3-bit prescale value
* B clock prescale bits in PWMPRCLK]6:4]
* A pescale bits in PWMPRCLK]2:0]

Both A & B clocks can be further scaled
= SA clock = A/IPWMSCLA (8-bit register)
* similarly SB clock = B/PWSCLB

* PWM channels & clock select

= channels 0,1,4,5 can use A or SA clock

» e.g. PWMCLK[0]=0 use A clock for channel 0
¢ if set to 1 use SA clock

= channels 2 and 3 use B or SB clock
PHEW! Lots of options & lots to remember
= or look up sec. 6.7 of your text

School of Computing
!yj University of Utah 2z CS 5780

8-bit PWM Output Example

void PWM_Init(void){
MODRR |= 0x01; // PTO with PWM
PWME |= 0x01; // enable channel 0
PWMPOL |= 0x01; // PTO high then low
PWMCLK |= 0x01; // Clock SA
PWMPRCLK = (PWMPRCLK&OxF8) |0x04; // A=E/16

PWMSCLA = 5; // SA=A/10, 0.25%160=40us
PWMPERO = 250; // 10ms period
PWMDTYO = 0; // initially off

}

void PWM_DutyO(unsigned char duty){
PWMDTYO = duty; // 0 to 250
}

School of Computing
!”J University of Utah 22 CS 5780

Page 11

16-bit PWM Output Example

void PWM_Init(void){
MODRR |= 0x08; // PT3 with PWM
PWME |= 0x08; // enable channel 3
PWMPOL |= 0x08; // PT3 high then low
PWMCLK &="0x08; // Clock B
PWMCTL |= 0x20; // Concatenate 2+3

PWMPRCLK = (PWMPRCLK&Ox8F) |0x60; // B=E/64
PWMPER23 = 62500; // 1s period
PWMDTY23 = 0; // initially off

}

// Set the duty cycle on PT3 output

void PWM_Duty(unsigned short duty){
PWMDTY23 = duty; // 0 to 62500

}

School of Computing
!yj University of Utah 23 CS 5780

Concluding Remarks

* Lots of fine grain detail
= which you won’t remember
* but hopefully you now get the basic ideas
¢ Key is that there are 3 important concepts
* output compare is a broadly useful technique
» for taking a specified action at a precise time
= dedicated PWM modules
» provide same opportunity but w/ super low overhead
* pulse accumulator useful for counting events
» for the 6812 they can be internally or externally sourced
e Devil is in the details
* and there are a lot of them unfortunately
= BUT
» you now have muitiple LAB7 implementation options
» enjoy them (I hope)

School of Computing
!”J University of Utah 24 CS 5780

Page 12

