
Page 1

1 CS 5780
School of Computing
University of Utah

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• Input capture

• particular focus on timing measurements

• useful for 5780 Lab 7

2 CS 5780
School of Computing
University of Utah

So Far

•  Familiar with
  threads, semaphores, & interrupts

•  Now move on to
  capturing edge based inputs which generate interrupts

  use of the TCNT timer to measure things like
»  frequency/period of a square wave

»  delay between events

»  etc.

•  Use this in 5780 Lab 7
  6870 students move into project land rather than the

 “weekly” labs

Page 2

3 CS 5780
School of Computing
University of Utah

Input Capture Basics

•  Trigger interrupts on rising/falling/both edges
  of TTL level external inputs

•  6812 has 8 input capture modules
•  Each input capture module has

  an external input pin: ICn
»  associated with Port T

  a flag bit: indicates an output has been captured
»  not a normal memory location

•  can only be set by input capture (or output compare) event

•  SW can clear the flag by writing a 1
–  write 0 has no effect on the flag

  Two edge control bits
»  EDGnB, EDGnA  care about rising, falling, or both edges

  An interrupt mask bit (book calls this “arm”)

  A 16 bit input capture register
»  e.g. grab the value of the TCNT timer when the event occurs

4 CS 5780
School of Computing
University of Utah

Usage Examples

•  Find the frequency of a periodic square wave
  measure the period

»  time between a pair of rising edges

  frequency = 1/period

•  Find the duty cycle of a periodic square wave
  duty cycle = % of period the input is a 1

  procedure
»  first find the period

»  then measure the time the input is high or “ON”
•  = time between rising and falling edge

•  period/high_time = duty cycle %

•  Measure jitter
  difference between max and min time between rising (or

 falling) edge transitions

Page 3

5 CS 5780
School of Computing
University of Utah

Basic HW Components per Channel

only 1 TCNT register however

6 CS 5780
School of Computing
University of Utah

Input Capture

•  Hardware can be set up to capture the events
  registers you care about

»  TSCR1[7] (a.k.a. TEN) – must be set to enable timer functions

»  TSCR2[2:0] – timer prescale bits PR2, Pr1, PR0

»  TIOS – set corresponding bit to 0 for input capture
•  same with DDRT bit

»  TIE – contains the mask/arm bits for the 8 possible channels

»  TFLG1 – contains the flag bits C7F … C0F

»  TCTL3 – contains edge bits for IC[4:7]

»  TCTL4 – contains edge bits for IC [3:0]

»  8 Input Capture registers: TCO – TC7 (one for each IC channel)

•  On event capture
  2 or 3 things happen

»  always
•  current TCNT value is copied into the Input Capture (IC) register

•  input capture flag is set

»  IF mask is 1
•  interrupt is requested

Page 4

7 CS 5780
School of Computing
University of Utah

Edge Bits

•  TCTL3 and TCTL4

  TCTL3
»  [EDG7B, EDG7A, …. , EDG4B, EDG4A]

  TCTL4
»  [EDG3B, EDG3A, … , EDG0B, EDG0A]

8 CS 5780
School of Computing
University of Utah

Clearing and Setting Flag Bits

•  Setting can only be done by an input capture event

•  Clearing can be done by SW
  but in a seemingly weird fashion

»  e.g. explicit write of 1 to the particular flag bit clears it

•  Assume you want to clear C0F
  the following works

  this one doesn’t

  WHY?

Page 5

9 CS 5780
School of Computing
University of Utah

Avoid bset & |= for Flag bits

•  Both bset and |=
  read current value of TFLG1

  bitwise OR with the mask
  $01 in this case

•  Result
  C0F gets cleared as desired

  BUT
»  if any of the C7F:C1F bits were set then they will be cleared as

 well – not as desired most likely

•  Usually you will clear the flags as an acknowledge that
 the event has been processed
  hence wise to avoid both

»  bset in asm

»  |= in C

10 CS 5780
School of Computing
University of Utah

ICn Mapping & Prescale Control

•  To map ICn to PTn
  set TIE[n] = 0

  set DDRT[n] = 0
  e.g. for IC3

»  note |= is fine for DDRT & TIE
•  just don’t use it for TFLG1 flag manipulation

•  Prescale bits – low order 3 bits of the TSCR2 register
  taken as a value P

  they mean divide by 2P

»  e.g. for a 4 MHz E Clock

»  P=7  divide by 128  event every 32 µs

»  P=3  divide by 8  event every 2 µs

  if you prefer tables rather than basic idea
»  see Table 6.5 in your text book

DDRT |= $08

TIE |= $08

Page 6

11 CS 5780
School of Computing
University of Utah

Input Capture Example

•  Use TLC555 astable multivibrator
  book companion CD has specs for a variety of 555 timers

  TLC555 period = 0.693 x CT x (RA + 2RB)
»  for 1 kHz

•  RA = 4.4 kΩ

•  RB = 5 kΩ

•  CT = 0.1 µF

  schematic

»  stability will be based on combined R & C tolerances

12 CS 5780
School of Computing
University of Utah

Interrupt Handler Latency

•  Max latency to handle the interrupt (best case 6812)
  finish current instruction

»  13 cycles or 3.25 µsec

  process the interrupt
»  9 cycles or 2.25 µsec

  execute the ISR including changing TIME value
»  11 cycles or 2.75 µsec

  max latency = 8.25 µsec

•  Note best case assumes
  no other interrupts

  main doesn’t disable interrupts

•  What’s the point
  if clock period is faster than max latency

»  you can’t measure it correctly

  hence important to calculate the max latency
»  harder if it’s not the best case (this example)

Page 7

13 CS 5780
School of Computing
University of Utah

Example: Init & ISR C Code

14 CS 5780
School of Computing
University of Utah

Period Measurement

•  Resolution
  is the smallest change that can be detected

»  for TCNT varies from 250 ns to 32 µs (4 MHz E Clock)

  also the basic units of measurement
»  e.g. TCNT ticks

•  Precision
  the number of separate & distinguishable measurements

»  for TCNT = 216 = 65,536 (a.k.a. 64K)

•  Range
  min and max values that can be measured

»  min = 0

»  max = 65,535

•  Good measurement systems should detect
  underflow and overflow

»  for TCNT: TOF = TFLG2[7] indicates timer overflow
•  we’ll ignore this for now

Page 8

15 CS 5780
School of Computing
University of Utah

Setting up a Period Measurement Experiment

•  Oh say like in Lab 7

•  Use a waveform generator
  set to TTL signal levels (5v, 0v)

•  Or convert a sign wave to a square wave
  simple OpAmp circuit

16 CS 5780
School of Computing
University of Utah

Setup

•  Some convenient assumptions to ease the example
  input period is 8192 µs or every 16,384 500ns cycles

  16,384 = $4000
»  note subtraction of time values doesn’t care if TOF occurs or

 not

•  Resolution set by cycle time = 500 ns

•  Precision
  less than 216

»  note need to compensate of max latency of ISR issue

»  interrupts faster than max latency
•  some will be missed

»  interrupts > but near max latency
•  handler occupancy goes to near 100%

  in this case not a problem

Page 9

17 CS 5780
School of Computing
University of Utah

Max Latency vs. Occupancy

18 CS 5780
School of Computing
University of Utah

Period Measurement Example

Page 10

19 CS 5780
School of Computing
University of Utah

Period Measurement Initialization

20 CS 5780
School of Computing
University of Utah

Period Measurement ISR

Page 11

21 CS 5780
School of Computing
University of Utah

Increasing Resolution to 32-bits

•  Every time TCNT overflows ($FFFF  $0000)
  TOF flag is set

•  So count # of times TOF is set
  16 bits of precision there

  plus the original 16 bits in TCNT

  VIOLA (Utah French) you end up with 32-bit precision

•  To do this
  arm both input capture and timer overflow interrupts

  for each timing measurements
»  high order 16-bits are TOF count

»  low order 16-bits are the input capture value difference

22 CS 5780
School of Computing
University of Utah

32-bits Illustrated

73728 = ($6000 - $4000) + 216 = 0x00012000

MODES:
0: look for IC1
1: look for next IC1
2: measurement
 done

Page 12

23 CS 5780
School of Computing
University of Utah

Tricky Bit

•  When IC1F and TOF get set at approximately the same
 time
  note IC1F has a higher priority than TOF

  if on first IC1F if TOF is not set
»  then time is simple TIC1 value

  if TOF was set
»  then TOF value could have occurred just before first IC1 event

 in which case the TOF count is off by +1
•  if this is the case the high order bit of TIC1 will be 0

•  fix is to check for this and decrement count
–  effectively disable the next increment

»  or it could have been set just after the first IC1 event in which
 case the TOF value is correct

•  in this case high order bit of TIC1 will be 1

•  in which case all is well

24 CS 5780
School of Computing
University of Utah

TOF set Just Before IC1F Flag

Page 13

25 CS 5780
School of Computing
University of Utah

TOF Set Just After IC1F Flag

26 CS 5780
School of Computing
University of Utah

32-bit Period IC1 ISR

Page 14

27 CS 5780
School of Computing
University of Utah

32-bit TOF ISR

28 CS 5780
School of Computing
University of Utah

Concluding Remarks

•  Lots of measurements are time based
  6812 has a reasonably evolved set of HW support for

 making these measurements reasonably easy

  today it was all about input capture
»  and the use of the TCNT timer module

  all you really need for Lab7

•  HW timer can be much more precise than reading a
 clock register via SW even though there is the max
 latency interrupt fudge factor

•  Next – we’ll find some other interesting interrupt options
  some of you already figured this out in Lab 5

»  which is pretty cool

