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 Today’s topics: 

• Input capture 

• particular focus on timing measurements 

• useful for 5780 Lab 7 
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So Far 

•  Familiar with 
  threads, semaphores, & interrupts 

•  Now move on to 
  capturing edge based inputs which generate interrupts 

  use of the TCNT timer to measure things like 
»  frequency/period of a square wave 

»  delay between events 

»  etc. 

•  Use this in 5780 Lab 7 
  6870 students move into project land rather than the

 “weekly” labs 
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Input Capture Basics 

•  Trigger interrupts on rising/falling/both edges 
  of TTL level external inputs 

•  6812 has 8 input capture modules 
•  Each input capture module has 

  an external input pin: ICn 
»  associated with Port T 

  a flag bit: indicates an output has been captured 
»  not a normal memory location 

•  can only be set by input capture (or output compare) event 

•  SW can clear the flag by writing a 1 
–  write 0 has no effect on the flag 

  Two edge control bits 
»  EDGnB, EDGnA  care about rising, falling, or both edges 

  An interrupt mask bit (book calls this “arm”) 

  A 16 bit input capture register 
»  e.g. grab the value of the TCNT timer when the event occurs 
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Usage Examples  

•  Find the frequency of a periodic square wave 
  measure the period 

»  time between a pair of rising edges 

  frequency = 1/period 

•  Find the duty cycle of a periodic square wave 
  duty cycle = % of period the input is a 1 

  procedure 
»  first find the period 

»  then measure the time the input is high or “ON” 
•  = time between rising and falling edge 

•  period/high_time = duty cycle % 

•  Measure jitter 
  difference between max and min time between rising (or

 falling) edge transitions 
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Basic HW Components per Channel 

only 1 TCNT register however 
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Input Capture 

•  Hardware can be set up to capture the events 
  registers you care about 

»  TSCR1[7] (a.k.a. TEN) – must be set to enable timer functions 

»  TSCR2[2:0] – timer prescale bits PR2, Pr1, PR0 

»  TIOS – set corresponding bit to 0 for input capture 
•  same with DDRT bit 

»  TIE – contains the mask/arm bits for the 8 possible channels 

»  TFLG1 – contains the flag bits C7F … C0F 

»  TCTL3 – contains edge bits for IC[4:7] 

»  TCTL4 – contains edge bits for IC [3:0] 

»  8 Input Capture registers: TCO – TC7 (one for each IC channel) 

•  On event capture 
  2 or 3 things happen 

»  always 
•  current TCNT value is copied into the Input Capture (IC) register 

•  input capture flag is set 

»  IF mask is 1 
•  interrupt is requested 
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Edge Bits 

•  TCTL3 and TCTL4 

  TCTL3 
»  [EDG7B, EDG7A, …. , EDG4B, EDG4A] 

  TCTL4 
»  [EDG3B, EDG3A, … , EDG0B, EDG0A] 
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Clearing and Setting Flag Bits 

•  Setting can only be done by an input capture event 

•  Clearing can be done by SW 
  but in a seemingly weird fashion  

»  e.g. explicit write of 1 to the particular flag bit clears it 

•  Assume you want to clear C0F 
  the following works 

  this one doesn’t 

  WHY? 
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Avoid bset & |= for Flag bits 

•  Both bset and |=  
  read current value of TFLG1  

  bitwise OR with the mask  
  $01 in this case 

•  Result 
  C0F gets cleared as desired 

  BUT 
»  if any of the C7F:C1F bits were set then they will be cleared as

 well – not as desired most likely 

•  Usually you will clear the flags as an acknowledge that
 the event has been processed 
  hence wise to avoid both  

»  bset in asm 

»  |= in C 
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ICn Mapping & Prescale Control 

•  To map ICn to PTn 
  set TIE[n] = 0 

  set DDRT[n] = 0 
  e.g. for IC3 

»  note |= is fine for DDRT & TIE  
•  just don’t use it for TFLG1 flag manipulation 

•  Prescale bits – low order 3 bits of the TSCR2 register 
  taken as a value P 

  they mean divide by 2P 

»  e.g. for a 4 MHz E Clock 

»  P=7   divide by 128  event every 32 µs 

»  P=3  divide by 8  event every 2 µs 

  if you prefer tables rather than basic idea 
»  see Table 6.5 in your text book 

DDRT |= $08

TIE |= $08
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Input Capture Example 

•  Use TLC555 astable multivibrator 
  book companion CD has specs for a variety of 555 timers 

  TLC555 period = 0.693 x CT x (RA + 2RB) 
»  for 1 kHz 

•  RA = 4.4 kΩ


•  RB = 5 kΩ


•  CT = 0.1 µF 

  schematic 

»  stability will be based on combined R & C tolerances 
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Interrupt Handler Latency 

•  Max latency to handle the interrupt (best case 6812) 
  finish current instruction 

»  13 cycles or 3.25 µsec 

  process the interrupt 
»  9 cycles or 2.25 µsec 

  execute the ISR including changing TIME value 
»  11 cycles or 2.75 µsec 

  max latency = 8.25 µsec 

•  Note best case assumes 
  no other interrupts 

  main doesn’t disable interrupts 

•  What’s the point 
  if clock period is faster than max latency  

»  you can’t measure it correctly 

  hence important to calculate the max latency 
»  harder if it’s not the best case (this example) 



Page 7 

13 CS 5780 
School of Computing 
University of Utah 

Example: Init & ISR C Code 
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Period Measurement 

•  Resolution 
  is the smallest change that can be detected 

»  for TCNT varies from 250 ns to 32 µs (4 MHz E Clock) 

  also the basic units of measurement 
»  e.g. TCNT ticks 

•  Precision 
  the number of separate & distinguishable measurements 

»  for TCNT = 216 = 65,536 (a.k.a. 64K) 

•  Range 
  min and max values that can be measured 

»  min = 0  

»  max = 65,535 

•  Good measurement systems should detect 
  underflow and overflow 

»  for TCNT: TOF = TFLG2[7] indicates timer overflow 
•  we’ll ignore this for now 
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Setting up a Period Measurement Experiment 

•  Oh say like in Lab 7 

•  Use a waveform generator 
  set to TTL signal levels (5v, 0v) 

•  Or convert a sign wave to a square wave 
  simple OpAmp circuit 
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Setup 

•  Some convenient assumptions to ease the example 
  input period is 8192 µs or every 16,384 500ns cycles 

  16,384 = $4000  
»  note subtraction of time values doesn’t care if TOF occurs or

 not 

•  Resolution set by cycle time = 500 ns 

•  Precision 
  less than 216 

»  note need to compensate of max latency of ISR issue 

»  interrupts faster than max latency 
•  some will be missed 

»  interrupts > but near max latency 
•  handler occupancy goes to near 100% 

  in this case not a problem  
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Max Latency vs. Occupancy 
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Period Measurement Example 
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Period Measurement Initialization 
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Period Measurement ISR 
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Increasing Resolution to 32-bits 

•  Every time TCNT overflows ($FFFF  $0000) 
  TOF flag is set 

•  So count # of times TOF is set  
  16 bits of precision there 

  plus the original 16 bits in TCNT 

  VIOLA (Utah French) you end up with 32-bit precision 

•  To do this 
  arm both input capture and timer overflow interrupts 

  for each timing measurements 
»  high order 16-bits are TOF count 

»  low order 16-bits are the input capture value difference 
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32-bits Illustrated 

73728 = ($6000 - $4000) + 216 = 0x00012000 

MODES: 
0: look for IC1 
1: look for next IC1 
2: measurement 
    done 
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Tricky Bit 

•  When IC1F and TOF get set at approximately the same
 time 
  note IC1F has a higher priority than TOF 

  if on first IC1F if TOF is not set 
»  then time is simple TIC1 value 

  if TOF was set  
»  then TOF value could have occurred just before first IC1 event

 in which case the TOF count is off by +1 
•  if this is the case the high order bit of TIC1 will be 0 

•  fix is to check for this and decrement count 
–  effectively disable the next increment 

»  or it could have been set just after the first IC1 event in which
 case the TOF value is correct 

•  in this case high order bit of TIC1 will be 1 

•  in which case all is well 
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TOF set Just Before IC1F Flag 
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TOF Set Just After IC1F Flag 
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32-bit Period IC1 ISR 
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32-bit TOF ISR 
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Concluding Remarks 

•  Lots of measurements are time based 
  6812 has a reasonably evolved set of HW support for

 making these measurements reasonably easy 

  today it was all about input capture 
»  and the use of the TCNT timer module 

  all you really need for Lab7 

•  HW timer can be much more precise than reading a
 clock register via SW even though there is the max
 latency interrupt fudge factor 

•  Next – we’ll find some other interesting interrupt options 
  some of you already figured this out in Lab 5 

»  which is pretty cool 


