CS/ECE 6780/5780

Al Davis

Today’s topics:

*Threads
‘restart code from last lecture
*move on to scheduling & phores

*Midterm (next Tues) covers Chaps & Labs 1-5

sample on the web

!DJ School of Computing

University of Utah 1 CS 5780

Interrupts on the 6812

* ISR’s
= declare ISR’s and the vector that they’re associated

void interrupt n IsrFcn () { ...code...}

» Interruptnlis pp b h PC
* maps n to IsrFcn

r reference manual pg. 538-539 shows what happens

d to a par

Table 10.11 Vector relationships

Vector Number Vector Address Vector Address Size
o QUFFFE, OXFFFF 2
1 OXFFFC, OXFFFD 2
2 OXFFFA. OXFFFB 2
n OXFFFF - (n*2) 2
!'JJ School of Computing 2 cs 5780
University of Utah

Mapping HW Events to Interrupt #’s

* In more complex microcontrollers
= this mapping can be set up in software
¢ For the 6812

= the map is fixed
» see MC9812C128V ref ¢l

1.6.1 pg. 61-62

mj School of Computing 3 CS 5780

University of Utah

First 18 Interrupts

Table 1-9. Interrupt Vector Locations

Int# Vector Address Interrupt Source on Local Enable HPRIO Value
External reset, power on reset,
ORFFFE OREFEE | (o oo e ermine | NP None -
reset source)

OxFFFC, OxFFFD Clock monitor fail reset None COPCTL (CME, FCME) —
OXFFFA, OXFFFB COP failure reset None COP rate select -
OxFFFB, OXFFFO Unimplemented instruction trap | None None —
OxFFF6, OxFFF7 swi None None -
OKFFF4, OXFFFS XIRQ X-Bit None —

Int7 OKFFF2, 0xFFF3 1RQ Tbit INTCR (IRQEN) 0x00F2
OxFFFO, OxFFF1 Real time Interrupt I bit CRGINT (RTIE) 0x00F0
OxFFEE, OxFFEF Standard timer channel 0 1 bit TIE (Col) OX00EE
OAFFEC, OXFFED Standard timer channel 1 Thit TIE (C1)) 0x00EC

SFFEE, SFFEF Reserved
SFFEC, SFFED Reserved

Int13 | OXFFEA, OXFFEB ‘Standard timer channel 2 1bit TIE (C2l) OX00EA
O«FFEB, OXFFED Standard timer channel 3 Thit TIE (Cal) 0x00E8
OxFFES, OxFFE7 Standard timer channel 4 1 bit TIE (C4I) 0x00E6
OxFFE4, OXFFES ‘Standard timer channel 5 hit TIE (Csl) 0x00E4
OxFFE2, OXFFE3 Standard timer channel 6 Thit TIE (C6) 0x00E2
OxFFEO, OxFFE1 ‘Standard timer channel 7 1 bit TIE (C71) 0x00EQ

l' J School of Computing M CS 5780
J University of Utah

Page 1

Remaining Interrupts

p—— PRU—— T | 0
SRS | S| i || e
oot et | P et T | Por o e
T o
o oo e o | e | e
o0 007 - | ey | oeoe
S -
s e s] e o
S oo wel sen | not needed for Lab5 or
RFFCE orFFCr = O this lecture
o ot =
o o =
S e =
R oG GG P Tion | Pionooks | oewos
A oS T N T
e =
e it] FeReEE e | oo
OxFFBS, 0xFFB7 AN wake-up'" Ibit 'CANRIER (WUPIE) 0x0086
S o e’ o | e oo, ovE | o
v o i | ownenmen | oo
T e o | oumeneaer | oo
b —_
PP, PP PP A N
S o T
GRFFoG, FFaD T | T oot
CiXi) VReaW R T R
Stk ot =
School of Computing
U] 5 cs 5780

University of Utah

Thread Code

* Admittedly somewhat silly & review from last lecture

int Sub(int j) { int i;
PTM = 1; // Port M
i= j+1;
return(i); }

void ProgA() { int i;
i=5;
while(1) {

PIM = 2;
i = sub(i); }}

void ProgB() { int i;

PTM assignment used
to provide external visibility
of the running thread

Use of one-hot code on PortM
pins is just a random choice

Key is that both ProgA & ProgB
threads run forever

i=6;
while(1) {
PIM = 4;
i = sub(i); }}

Hence preemptive scheduler is needed

School of Computing

University of Utah 6 CS 5780

U)

Setting up the TCB

struct TCB

{ struct TCB *Next; /* Link to Next TCB */
unsigned char *SP; /* Stack Pointer when idle */
unsigned short Id; /* output to PortT */
unsigned char MoreStack[49]; /#* more stack */
unsigned char CCR; /* Initial CCR */
unsigned char RegB; /* Initial RegB */
unsigned char RegA; /* Initial RegA */
unsigned short RegX; /* Initial RegX */
unsigned short RegY; /* Initial RegY */
void (*PC) (void); /* Initial PC %/

I
typedef struct TCB TCBType;

typedef TCBIype * TCBPtr; see anything fishy so far?

V)

School of Computing

Unlversity of Utah 7 CS 5780

Port M vs. Port T

+ Essentlal difference between program & thread
= program is just the code
» note that code has no state
» I¥’s Just a specification of what will happen If It Is executed
= thread is an execution instance

» inherently has state
* In this case Initlal state can be seen In the code
. state will
- TCB values If the thread Isn't running
- TCB values and registers i the thread Is running

* In this simple example
= Port M Is used to show which Program Is belng executed
= Port T is used to show which Th d is being
= In this case
» M will be the same for threads 1 & 2

» In general
+ a thread could run more than 1 program in different thread phases

School of Computing

Unlversity of Utah 8 CS 5780

V)

Page 2

Defining 3 Threads

TCBType sys[3]={

{ &sysl(i], /* Pointer to Next */
&sys[0].CCR, /* Initial SP */ =
1, /% 1d +/ Thread n = sys[n]
{ 0},

threads 1 & 2 are the same code

0x40,0,0,0,0, /* CCR,B,A,X,Y x/ but work on different local data

ProgA }, /* Initial PC */
{ &sysl2], /* Pointer to Next */
es CCR = 0x40
:SYS[“'CC“' ;: i:‘sal 5 s/ XIRQ disabled
< ’0} IRQ enabled

0x40,0,0,0,0, CCR,B,A,X,Y * .
* /* / Note all TCB variables values here

< :?520]}, /;'Il’:z:i:i::o*;ext / influence only what happens the
&sgs {21 CoR 7% Toivin SP FIRST time the thread is executed
:,0} /+ 1d +/ Why will these variables need to be

jons?
0x40.0,0,0,0, /* CCR,B,A,X,Y */ changed for subsequent executions

ProgB } }; /* Initial PC */

!”, School of Computing

University of Utah 9 CS 5780

Preemptive Thread Scheduler in C

TCBPtr RunPt; /* Pointer to current thread */
void main(void) {

DDRT = OxFF; /* Output running thread on Port T */

DDRM = OxFF; /* Output running program on Port M */

RunPt = &sys[0]; /* Specify first thread */

asm sei

TFLG1 = 0x20; /* Clear CSF */

TIE = 0x20; /* Arm CSF */

TSCR1 = 0x80; /* Enable TCNT*/

TSCR2 = 0x01; /* 2MHz TCNT =/

TIOS |= 0x20; /* Output compare */

TC5 = TCNT+20000;

PTT = RunPt->Id;

asm 1ldx RunPt
asm 1lds 2,x
asm cli
asm rti
} /* Launch First Thread */

U)

School of Computing

University of Utah 10 CS 5780

Preemptive Thread Switch

void interrupt 13 ThreadSwitch() {
asm 1ldx RunPt
asm sts 2,x
RunPt RunPt->Next;
PTT = RunPt->Id;
asm 1ldx RunPt
asm 1lds 2,x
TC5 = TCNT+20000;
TFLG1 = 0x20; }

/* PortH=active thread */

/* Thread runs for 10 ms */
/* ack by clearing C5F x/

see any mistakes?
what does “interrupt 13” mean?

mj School of Computing 1 CS 5780

University of Utah

Dynamic Thread Allocator

int create(void (*startFunc)(void), int TheId) {
TCBPtr NewPt; // pointer to new thread control block
NewPt = (TCBPtr)malloc(sizeof (TCBType)); // new TCB
if (NewPt==0)return FAIL;
NewPt->SP = &(NewPt->CCR); /* Stack Pointer when not running */

NewPt->Id = Theld; /* Visualize active thread */
NewPt->CCR = 0x40; /* Initial CCR, I=0 */
NewPt->RegB = 0; /+ Initial RegB */
NewPt->Regh = 0; /* Initial RegA */
NewPt->RegX = 0; /* Initial RegX */
NewPt->RegY = 0; /* Initial Reg¥ */
NewPt->PC = startFunc; /* Initial PC */
if (RunPt) {

NewPt->Next = RunPt->Next;

RunPt->Next = NewPt;} /* will run Next */
else

RunPt = NewPt; /* the first and only thread */

return SUCCESS;

U]}

School of Computing

Unlversity of Utah 12 CS 5780

Page 3

Concluding Remarks

* Implementation of a very simple thread system
= e.g. d robin p pti
= it’s not that hard

» but note the tricks for setting the PC to the appropriate thread
code start

* Preemptive scheduling
= lies at the heart of an RTOS
» but in this case we didn’t consider real time issues
+ making things significantly easier
¢ The hard part
= designing correct embedded codes that use threads

* Note
= this code shows the general idea

= there are parts missing that will need to be coded for a full
solution - future lab?

School of Computing

University of Utah 13 CS 5780

V)

So Far

* We’ve talked about
= thread scheduling
= synchronization
» between main & ISR’s
* Next
= synchronization
» between threads
= table driven scheduling

School of Computing

University of Utah 14 CS 5780

U)

2 Threads & a communication FIFO

int Fifo_Put(char data)
{
char *Ppt;
// BEGIN CRITICAL
Ppt=PutPt;
*(Ppt++)=data;
if (Ppt == &Fifo[FIFOSIZE]) Ppt =
if (Ppt == GetPt) {
// END CRITICAL
return(0) ;
} else {
PutPt=Ppt;
// END CRITICAL
return(1);

}

&Fifo[0];

}

what’s missing?

School of Computing

Unlversity of Utah 15 CS 5780

V)

Semaphores

* Used to Implement mutual exclusion (MUTEX)
= useful for Y & communication
¢ 2 basic operations
= classic terminology
» P 2 wait (Djikstra’s Dutch “probeer te verlagen” ::- try to grab”
» V = gignal (“verhogen” == Increase)
= semaphore Is binary value
» 1 9 free (resource avallable)
» 0 busy (resource owned by some other thread)
¢ Numerous semaphore Implementations
= gsimplest is a “Spin-Lock” version
» thread calls wait to walt (spins) for semaphore to be free
+ when semaphore Is free, vait sets semaphore to busy
+ and then return
» critical
+ enable Interrupts during spin or presmption can’t happen
+ read modify write on semaphore value must be atomic
- otherwise an Interrupt might switch threads and chaos will result
» once thread Is done It calls signal to return the semaphore to free

School of Computing

Unlversity of Utah 16 CS 5780

V)

Page 4

2 Common Semaphore Types

* Binary
= simple lock
e Counter
= useful when multiple resources are avallable
» say tables in a restaurant
+ >0 there Is something avallable
+ <m 0 the place Is busy
* hence the semantics
* Note earller lecture error
= tst Instruction Is not “Test and Set”
» this instruction exists on a lot of machines
+ useful for binary semaphores
= 6812 TST, TSTA, TSTB > test M,A, or B for 0 or minus

MINA & MINM Instructions

* MINM
= stores minimum value
» MINM [opndA, opndB] & min(A, B) stored In B
+ CC bits N,Z,V,C set based on A-B
+ opndA can be
- Indexed addressing postbyte code
- e.g. preincrement simllar to “test and set”
- Integer In various ranges
+ opndB can be
- XY, 8P
= useful for semaphore Implementation

* MINA does the same thing
= but result goes to reglister A rather than memory

» does not change M, A, or B value - Just changes the CC flags = only one REG A however so unllkely cholce for ph
» hence not useful for h i i impimentation
School of Computing School of Computing
W) university of Utah 7 Cs 5780 W) university of Utah 18 CS 5780
Wait & Signal Remember the Atomicity Functions
unsigned char begin_critical (void)
{ Key idea
unsigned char SaveSP;
asm tpa begin - save the predicate register
asm staa SaveSP .
- in SaveSP
asm sel . .
return SaveSP; disable interrupts
void end_critical (unsigned char SaveSP) on end - restore the predicate register
asm ldaa Savesp why no cli to re-enable interrupts?
asm tap
School of Computin School of Computin
U)] Unlversity of Utah 19 CS 5780 ()] purting CS 5780

University of Utah 20

Page 5

Spin-Lock Semaphore Wait

// decrement and spin if less than 0
// input: pointer to a semaphore
// output: none
void 0S_Wait(short *semaPt) {
unsigned char SaveSP = begin_critical();
while(*semaPt <= 0) {
end_critical (SaveSP);

asm nop
SaveSP = begin_critical();
}
(*semaPt)--;
end_critical (SaveSP);

}

key point: semaphore access is in critical section & MUTEX

School of Computing
University of Utah

V)

21

CS 5780

Spin-Lock Semaphore Signal

// increment semaphore

// input: pointer to a semaphore

// output: none

void 0S_Signal(short *semaPt) {
unsigned char SaveSP = begin_critical();
(*semaPt)++;
end_critical (SaveSP);

}

School of Computing
University of Utah

U)

22

CS 5780

Spin-Lock Binary Semaphore

void bWait(char *semaphore) {

asm clra
asm loop: minm [2,x]
asm bce loop

}
void bSignal(char *semaphore) {
(xsemaphore) = 1; // compiler makes this atomic

}

clra sets new value for the semaphore
minm [2,X] is test and set in ICC version 5

not sure why this works — anybody know?

School of Computing

University of Utah 23

CS 5780

V)

Counting Semaphore from Binary Semaphores

struct sema4
{ short value; // semaphore value

char si; // binary semaphore
char s2; // binary semaphore
char s3; // binary semaphore

I

typedef struct sema4 sema4Type;

typedef semadType * sema4dPtr;

void Initialize(sema4Ptr semaphore, short initial) {

semaphore->s1 = 1; // first one to bWait(sl) continues
semaphore->s2 = 0; // first one to bWait(s2) spins
semaphore->s3 = 1; // first one to bWait(s3) continues

semaphore->value=initial;

}

School of Computing

University of Utah 24

CS 5780

V)

Page 6

Counting Semaphore (cont’d)

void Wait(sema4Ptr semaphore) {
bWait (&semaphore->s3); // wait if other caller here first
bWait (&semaphore->s1); // mutual exclusive access to value
(semaphore->value)--; // basic function of Wait
if ((semaphore->value)<0) {
bSignal (&semaphore->s1); // end of exclusive access
bWait (&semaphore->s2) ; // wait for value to go above 0
}
else
bSignal (&semaphore->s1); // end of exclusive access
bSignal (&semaphore->s3) ; // let other callers in

School of Computin,
U] University of Utah N 25 CS 5780

Counting Semaphore (cont’d)

void Signal(sema4Ptr semaphore) {
bWait (&semaphore->s1);
(semaphore->value)++;

// exclusive access
// basic function of Signal
if ((semaphore->value)<=0)
bSignal (&semaphore->s2); // allow S2 spinner to continue
bSignal (&semaphore->s1) ; // end of exclusive access

School of Computing
!DJ University of Utah 26 CS 5780

Blocking Semaphore

¢ Useful when muitiple threads are blocked walting on a
resource

mj School of Computing

Unlversity of Utah 27 CS 5780

Blocking Semaphore Stages

Initialize:
Set the counter to its initial value.
Clear associated blocked tcb linked list.
Wait:
Disable interrupts to make atomic
Decrement the semaphore counter, S=S-1
If semaphore counter < 0, then block this thread.
Restore interrupt status.
Signal:
Disable interrupts to make atomic
Increment the semaphore counter, S=S+1
If counter < 0, wakeup one thread.
Restore interrupt status

mj School of Computing 28 CS 5780

University of Utah

Page 7

Initialize

S rmb 1
BlockPt rmb 2
Init tpa

;semaphore counter

psha ;Save old value of I
sei ;Make atomic

ldaa #1

staa S ;Init semaphore value
ldx #Null

stx BlockPt ;empty list

pula

tap ;Restore old value of I
rts

;Pointer to threads blocked on S

Block a Thread

!”J School of Computing

University of Utah 2

CS 5780

; To block a thread on semaphore S, execute SWI

SWIhan 1ldx RunPt ;running process "to be blocked"
sts SP,x ;save Stack Pointer in its TCB

; Unlink "to be blocked" thread from RunPt list

1dy Next,x ;find previous thread
sty RunPt ;next ome to run
look cpx Next,y ;search to find previous
beq found
1ldy Next,y
bra look
found 1dd RunPt ;one after blocked
std Next,y ;link previous to next to run

!DJ School of Computing

University of Utah 30 CS 5780

Block and Launch Next

H

Put "to be blocked" thread on block list
ldy BlockPt
sty Next,x
stx BlockPt

;1link "to be blocked"

; Launch next thread

ldx RunPt

1lds SP,x ;set SP for this new thread

1ldd TCNT ;Next thread gets a full 10ms time slice
addd #20000 ;interrupt after 10 ms

std TC5

ldaa #$20

staa TFLG1 ;clear C5F

rti

Linked Lists

mj School of Computing 2

University of Utah

CS 5780

X\ Tobe Y
Previous blocked \ Next o run
TCB TCB TCB

¢ X To be D
\ Previous blocked \ Next to run

TCB TCB TCB
“To be blocked” Already blocked
X—> 0 Y—>
TCB TCB TCB

mj School of Computing 32 CS 5780

University of Utah

Thread Rendezvous

Synchronize two threads at a rendezvous location.
S1 S2 Meaning
0 0 Neither thread at rendezvous location
-1 +1 Thread 2 arrived first, waiting for thread 1
+1 -1 Thread 1 arrived first, waiting for thread 2

Thread 1 Thread 2
signal(&S1); signal(&S2);
wait (&S2); wait (&S1);

This only works for 2 threads
How do you make a general n thread barrier?

!”J School of Computing a3 CS 5780

University of Utah

Mutex Sharing or Non-reentrant Code

Guarantee mutual exclusive access to a critical section.

Thread 1 Thread 2 Thread 3
bwait (&S); bwait (&S); bwait (&S);
printf("bye"); printf("tchau"); printf("ciao");
bsignal (&S); bsignal (&S); bsignal (&S);

W) Griversity of Ueah s Cs 5780

2 Thread Mailbox

Thread 1 sends mail to thread 2.

Send Ack Meaning
0 0 No mail available, consumer not waiting

-1 0 No mail available, consumer is waiting

+1 -1 Mail available and producer is waiting
Producer thread ~ Consumer thread
Mail=4; wait (&send) ;
signal(&send); read(Mail);
wait (&ack) ; signal (&ack) ;

e e om0

Bounded FIFO

¢ Multiple consumer and producer threads

PutFifo GetFifo

wait (&RoomLeft) ; wait (&CurrentSize) ;
wait (&mutex) ; wait (&mutex) ;

put data in FIFO remove data from FIFO
signal (&mutex) ; signal (&mutex) ;
signal (&CurrentSize); signal(&RoomLeft);

Could disable interrupts instead of using mutex, but would
lock out threads that don't affect the FIFO.

mj School of Computing

Unlversity of Utah 36 CS 5780

Page 9

Concluding Remarks

¢ Threads introduce concurrency
= decoupling makes thinking about lex tasks
= there is a cost however
» scheduling is required

» q additional control
. are the trol
* but must be

¢ Reminder
= midterm Tuesday
= don’t be late

!DJ School of Computing

University of Utah 37 CS 5780

Page 10

