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CS/ECE 6780/5780 

Al Davis 

 Today’s topics: 

• Threads 

• restart code from last lecture 

• move on to scheduling & semaphores 

• Midterm (next Tues) covers Chaps & Labs 1-5 

• sample on the web   
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Interrupts on the 6812 

•  ISR’s 
  declare ISR’s and the vector that they’re associated 

»  interrupt n is mapped to a particular branch PC 
•  maps n to IsrFcn 

•  compiler reference manual pg. 538-539 shows what happens 

void interrupt n IsrFcn () { …code…} 
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Mapping HW Events to Interrupt #’s 

•  In more complex microcontrollers 
  this mapping can be set up in software 

•  For the 6812 
  the map is fixed 

»  see MC9S12C128V reference manual section 1.6.1 pg. 61-62 
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First 18 Interrupts 

Int # 

Int 7 

Int 13 
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Remaining Interrupts 

not needed for Lab5 or 
this lecture 
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Thread Code 

•  Admittedly somewhat silly & review from last lecture 

PTM assignment used 
to provide external visibility  
of the running thread 

Use of one-hot code on PortM 
pins is just a random choice 

Key is that both ProgA & ProgB 
threads run forever 

Hence preemptive scheduler is needed 
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Setting up the TCB 

see anything fishy so far? 
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Port M vs. Port T 

•  Essential difference between program & thread 
  program is just the code 

»  note that code has no state 

»  it’s just a specification of what will happen if it is executed 

  thread is an execution instance 
»  inherently has state 

•  in this case initial state can be seen in the code 

•  subsequent state will depend 
–  TCB values if the thread isn’t running 

–  TCB values and registers if the thread is running 

•  In this simple example 
  Port M is used to show which Program is being executed 

  Port T is used to show which Thread is being executed 

  in this case 
»  M will be the same for threads 1 & 2 

»  in general 
•  a thread could run more than 1 program in different thread phases 
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Defining 3 Threads 

Thread n = sys[n] 

threads 1 & 2 are the same code 
but work on different local data 

CCR = 0x40 
 XIRQ disabled 
 IRQ enabled 

Note all TCB variables values here 
influence only what happens the  
FIRST time the thread is executed 

Why will these variables need to be  
changed for subsequent executions? 
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Preemptive Thread Scheduler in C 
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Preemptive Thread Switch 

see any mistakes? 
what does “interrupt 13” mean? 
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Dynamic Thread Allocator 
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Concluding Remarks 

•  Implementation of a very simple thread system 
  e.g. round robin preemptive  

  it’s not that hard 
»  but note the tricks for setting the PC to the appropriate thread

 code start 

•  Preemptive scheduling  
  lies at the heart of an RTOS 

»  but in this case we didn’t consider real time issues 
•  making things significantly easier 

•  The hard part 
  designing correct embedded codes that use threads 

•  Note 
  this code shows the general idea 

  there are parts missing that will need to be coded for a full
 solution – future lab? 
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So Far 

•  We’ve talked about 
  thread scheduling 

  synchronization 
»  between main & ISR’s 

•  Next 
  synchronization  

»  between threads 

  table driven scheduling 
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2 Threads & a communication FIFO 

what’s missing? 
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Semaphores 

•  Used to implement mutual exclusion (MUTEX) 
  useful for sharing, synchronization, & communication 

•  2 basic operations 
  classic terminology 

»  P  wait (Djikstra’s Dutch “probeer te verlagen” ::- try to grab” 

»  V  signal (“verhogen” ::= increase) 

  semaphore is binary value 
»  1  free (resource available) 

»  0  busy (resource owned by some other thread) 

•  Numerous semaphore implementations 
  simplest is a “Spin-Lock” version 

»  thread calls wait to wait (spins) for semaphore to be free 
•  when semaphore is free, wait sets semaphore to busy 

•  and then return 

»  critical  
•  enable interrupts during spin or preemption can’t happen 

•  read modify write on semaphore value must be atomic 
–  otherwise an interrupt might switch threads and chaos will result 

»  once thread is done it calls signal to return the semaphore to free 
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2 Common Semaphore Types 

•  Binary 
  simple lock 

•  Counter 
  useful when multiple resources are available 

»  say tables in a restaurant 
•  >0 there is something available 

•  <= 0 the place is busy 

•  hence the semantics 

•  Note earlier lecture error 
  tst instruction is not “Test and Set” 

»  this instruction exists on a lot of machines 
•  useful for binary semaphores 

  6812 TST, TSTA, TSTB  test M,A, or B for 0 or minus 
»  does not change M, A, or B value – just changes the CC flags 

»  hence not useful for semaphore implementation 
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MINA & MINM Instructions 

•  MINM 
  stores minimum value 

»  MINM [opndA, opndB]  min(A, B) stored in B 
•  CC bits N,Z,V,C set based on A-B 

•  opndA can be 
–  indexed addressing postbyte code 

–  e.g. preincrement similar to “test and set” 

–  integer in various ranges 

•  opndB can be 
–  X, Y, SP 

  useful for semaphore implementation 

•  MINA does the same thing 
  but result goes to register A rather than memory 

  only one REG A however so unlikely choice for semaphore
 implmentation 
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Wait & Signal 
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Remember the Atomicity Functions 

Key idea 

begin - save the predicate register  
 in SaveSP 

disable interrupts 

on end – restore the predicate register 

why no cli to re-enable interrupts? 
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Spin-Lock Semaphore Wait 

key point: semaphore access is in critical section & MUTEX 
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Spin-Lock Semaphore Signal 
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Spin-Lock Binary Semaphore 

clra sets new value for the semaphore 
minm [2,X] is test and set in ICC version 5 

not sure why this works – anybody know? 
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Counting Semaphore from Binary Semaphores 
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Counting Semaphore (cont’d) 
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Counting Semaphore (cont’d) 
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Blocking Semaphore 

•  Useful when multiple threads are blocked waiting on a
 resource 
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Blocking Semaphore Stages 
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Initialize 
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Block a Thread 
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Block and Launch Next 
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Linked Lists 
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Thread Rendezvous 

This only works for 2 threads 
How do you make a general n thread barrier? 
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Mutex Sharing or Non-reentrant Code 
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2 Thread Mailbox 
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Bounded FIFO  

•  Multiple consumer and producer threads 
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Concluding Remarks 

•  Threads introduce concurrency 
  decoupling makes thinking about complex tasks easier 

  there is a cost however 
»  scheduling is required 

»  shared resources requires additional control 
•  semaphores are the control mechanism 

•  but access must be mutually exclusive 

•  Reminder 
  midterm Tuesday 

  don’t be late 


