
Page 1

1 CS 5780
School of Computing
University of Utah

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• Threads

• restart code from last lecture

• move on to scheduling & semaphores

• Midterm (next Tues) covers Chaps & Labs 1-5

• sample on the web

2 CS 5780
School of Computing
University of Utah

Interrupts on the 6812

•  ISR’s
  declare ISR’s and the vector that they’re associated

»  interrupt n is mapped to a particular branch PC
•  maps n to IsrFcn

•  compiler reference manual pg. 538-539 shows what happens

void interrupt n IsrFcn () { …code…}

Page 2

3 CS 5780
School of Computing
University of Utah

Mapping HW Events to Interrupt #’s

•  In more complex microcontrollers
  this mapping can be set up in software

•  For the 6812
  the map is fixed

»  see MC9S12C128V reference manual section 1.6.1 pg. 61-62

4 CS 5780
School of Computing
University of Utah

First 18 Interrupts

Int #

Int 7

Int 13

Page 3

5 CS 5780
School of Computing
University of Utah

Remaining Interrupts

not needed for Lab5 or
this lecture

6 CS 5780
School of Computing
University of Utah

Thread Code

•  Admittedly somewhat silly & review from last lecture

PTM assignment used
to provide external visibility
of the running thread

Use of one-hot code on PortM
pins is just a random choice

Key is that both ProgA & ProgB
threads run forever

Hence preemptive scheduler is needed

Page 4

7 CS 5780
School of Computing
University of Utah

Setting up the TCB

see anything fishy so far?

8 CS 5780
School of Computing
University of Utah

Port M vs. Port T

•  Essential difference between program & thread
  program is just the code

»  note that code has no state

»  it’s just a specification of what will happen if it is executed

  thread is an execution instance
»  inherently has state

•  in this case initial state can be seen in the code

•  subsequent state will depend
–  TCB values if the thread isn’t running

–  TCB values and registers if the thread is running

•  In this simple example
  Port M is used to show which Program is being executed

  Port T is used to show which Thread is being executed

  in this case
»  M will be the same for threads 1 & 2

»  in general
•  a thread could run more than 1 program in different thread phases

Page 5

9 CS 5780
School of Computing
University of Utah

Defining 3 Threads

Thread n = sys[n]

threads 1 & 2 are the same code
but work on different local data

CCR = 0x40
 XIRQ disabled
 IRQ enabled

Note all TCB variables values here
influence only what happens the
FIRST time the thread is executed

Why will these variables need to be
changed for subsequent executions?

10 CS 5780
School of Computing
University of Utah

Preemptive Thread Scheduler in C

Page 6

11 CS 5780
School of Computing
University of Utah

Preemptive Thread Switch

see any mistakes?
what does “interrupt 13” mean?

12 CS 5780
School of Computing
University of Utah

Dynamic Thread Allocator

Page 7

13 CS 5780
School of Computing
University of Utah

Concluding Remarks

•  Implementation of a very simple thread system
  e.g. round robin preemptive

  it’s not that hard
»  but note the tricks for setting the PC to the appropriate thread

 code start

•  Preemptive scheduling
  lies at the heart of an RTOS

»  but in this case we didn’t consider real time issues
•  making things significantly easier

•  The hard part
  designing correct embedded codes that use threads

•  Note
  this code shows the general idea

  there are parts missing that will need to be coded for a full
 solution – future lab?

14 CS 5780
School of Computing
University of Utah

So Far

•  We’ve talked about
  thread scheduling

  synchronization
»  between main & ISR’s

•  Next
  synchronization

»  between threads

  table driven scheduling

Page 8

15 CS 5780
School of Computing
University of Utah

2 Threads & a communication FIFO

what’s missing?

16 CS 5780
School of Computing
University of Utah

Semaphores

•  Used to implement mutual exclusion (MUTEX)
  useful for sharing, synchronization, & communication

•  2 basic operations
  classic terminology

»  P  wait (Djikstra’s Dutch “probeer te verlagen” ::- try to grab”

»  V  signal (“verhogen” ::= increase)

  semaphore is binary value
»  1  free (resource available)

»  0  busy (resource owned by some other thread)

•  Numerous semaphore implementations
  simplest is a “Spin-Lock” version

»  thread calls wait to wait (spins) for semaphore to be free
•  when semaphore is free, wait sets semaphore to busy

•  and then return

»  critical
•  enable interrupts during spin or preemption can’t happen

•  read modify write on semaphore value must be atomic
–  otherwise an interrupt might switch threads and chaos will result

»  once thread is done it calls signal to return the semaphore to free

Page 9

17 CS 5780
School of Computing
University of Utah

2 Common Semaphore Types

•  Binary
  simple lock

•  Counter
  useful when multiple resources are available

»  say tables in a restaurant
•  >0 there is something available

•  <= 0 the place is busy

•  hence the semantics

•  Note earlier lecture error
  tst instruction is not “Test and Set”

»  this instruction exists on a lot of machines
•  useful for binary semaphores

  6812 TST, TSTA, TSTB  test M,A, or B for 0 or minus
»  does not change M, A, or B value – just changes the CC flags

»  hence not useful for semaphore implementation

18 CS 5780
School of Computing
University of Utah

MINA & MINM Instructions

•  MINM
  stores minimum value

»  MINM [opndA, opndB]  min(A, B) stored in B
•  CC bits N,Z,V,C set based on A-B

•  opndA can be
–  indexed addressing postbyte code

–  e.g. preincrement similar to “test and set”

–  integer in various ranges

•  opndB can be
–  X, Y, SP

  useful for semaphore implementation

•  MINA does the same thing
  but result goes to register A rather than memory

  only one REG A however so unlikely choice for semaphore
 implmentation

Page 10

19 CS 5780
School of Computing
University of Utah

Wait & Signal

20 CS 5780
School of Computing
University of Utah

Remember the Atomicity Functions

Key idea

begin - save the predicate register
 in SaveSP

disable interrupts

on end – restore the predicate register

why no cli to re-enable interrupts?

Page 11

21 CS 5780
School of Computing
University of Utah

Spin-Lock Semaphore Wait

key point: semaphore access is in critical section & MUTEX

22 CS 5780
School of Computing
University of Utah

Spin-Lock Semaphore Signal

Page 12

23 CS 5780
School of Computing
University of Utah

Spin-Lock Binary Semaphore

clra sets new value for the semaphore
minm [2,X] is test and set in ICC version 5

not sure why this works – anybody know?

24 CS 5780
School of Computing
University of Utah

Counting Semaphore from Binary Semaphores

Page 13

25 CS 5780
School of Computing
University of Utah

Counting Semaphore (cont’d)

26 CS 5780
School of Computing
University of Utah

Counting Semaphore (cont’d)

Page 14

27 CS 5780
School of Computing
University of Utah

Blocking Semaphore

•  Useful when multiple threads are blocked waiting on a
 resource

28 CS 5780
School of Computing
University of Utah

Blocking Semaphore Stages

Page 15

29 CS 5780
School of Computing
University of Utah

Initialize

30 CS 5780
School of Computing
University of Utah

Block a Thread

Page 16

31 CS 5780
School of Computing
University of Utah

Block and Launch Next

32 CS 5780
School of Computing
University of Utah

Linked Lists

Page 17

33 CS 5780
School of Computing
University of Utah

Thread Rendezvous

This only works for 2 threads
How do you make a general n thread barrier?

34 CS 5780
School of Computing
University of Utah

Mutex Sharing or Non-reentrant Code

Page 18

35 CS 5780
School of Computing
University of Utah

2 Thread Mailbox

36 CS 5780
School of Computing
University of Utah

Bounded FIFO

•  Multiple consumer and producer threads

Page 19

37 CS 5780
School of Computing
University of Utah

Concluding Remarks

•  Threads introduce concurrency
  decoupling makes thinking about complex tasks easier

  there is a cost however
»  scheduling is required

»  shared resources requires additional control
•  semaphores are the control mechanism

•  but access must be mutually exclusive

•  Reminder
  midterm Tuesday

  don’t be late

