CS/ECE 6780/5780
Al Davis

Today’s topics:
*Threads
‘restart code from last lecture
*move on to scheduling & semaphores
*‘Midterm (next Tues) covers Chaps & Labs 1-5

sample on the web

School of Computing
!yj University of Utah 1 CS 5780

Interrupts on the 6812

* ISR’s
= declare ISR’s and the vector that they’re associated
void interrupt n IsrFen () { ...code...}

» interrupt n is mapped to a particular branch PC
* maps n to IsrFcn
* compller reference manual pg. 538-539 shows what happens

Table 10.11 Vector relationships

Vector Number Vector Address Vector Address Size

0 OXFFFE, OXFFFF 2

1 OXFFFC, OXFFFD 2

2 OxFFFA. OXFFFB 2

n OXFFFF - (n*2) 2

School of Computing
!”J University of Utah 2 CS 5780

Page 1

Mapping HW Events to Interrupt #’s

¢ In more complex microcontrollers
= this mapping can be set up in software

* For the 6812

= the map is fixed

» see MC9S12C128V reference manual section 1.6.1 pg. 61-62

School of Computing

!yj University of Utah €S 5780
First 18 Interrupts
Table 1-9. Interrupt Vector Locations
Int# Vector Address Interrupt Source 3::::(Local Enable H‘F; Ré?e‘\,,:'l:e
External reset, power on reset,
OXFFFE, OxFFFF (see CR(oi’ﬂlzgsvroe:;sgti:fﬁetermine None None -
reset source)

0xFFFC, OxFFFD Clock monitor fail reset None COPCTL (CME, FCME) —
0xFFFA, 0xFFFB COP failure reset None COP rate select —
OxFFF8, 0xFFF9 Unimplemented instruction trap None None —
0xFFF6, OXFFF7 SwiI None None —
OxFFF4, 0xFFF5 XIRQ X-Bit None —

Int7 OxFFF2, OXFFF3 IRQ I bit INTCR (IRQEN) 0x00F2
0xFFFO, OxFFF1 Real time Interrupt | bit CRGINT (RTIE) 0x00F0
OxFFEE, OxFFEF Standard timer channel 0 I bit TIE (Col) 0x00EE
0xFFEC, OXFFED Standard timer channel 1 | bit TIE (C11) 0x00EC

$FFEE, $FFEF Reserved
SFFEC, SFFED Reserved

Int13 OxFFEA, OXFFEB Standard timer channel 2 | bit TIE (C21) OX00EA
OxFFES8, OxFFE9 Standard timer channel 3 I bit TIE (C3I) 0x00E8
0xFFES6, OXFFE7 Standard timer channel 4 I bit TIE (C4l) 0x00E6
OxFFE4, OxFFE5 Standard timer channel 5 I bit TIE (Csl) 0x00E4
0xFFE2, OXFFE3 Standard timer channel 6 I bit TIE (Csl) 0x00E2
OxFFEO, OxFFE1 Standard timer channel 7 I bit TIE (C71) 0x00EQ

!DJ School of Computing s cS 5780

University of Utah

Page 2

Remaining Interrupts

Vector Address Interrupt Source on Local Enable HPRIO Value
OxFFDE, 0xFFDF Standard timer overflow 1bit TMSK2 (TOI) 0x00DE
OXFFDC, 0xFFDD Pulse accumulator A overfiow 1bit PACTL (PAOVI) 0x00DC
OXFFDA, OXFFDB Pulse accumulator input edge 1bit PACTL (PA)) 0x00DA
0xFFD8, 0xFFD9 SPI 1bit SPICR1 (SPIE, SPTIE) 0x00D8
SCICR2
OxFFDS, OxFFD7 scl 1bit (TIE, TCIE, RIE, IUE) 0x00D6
OXFFD4, 0xFFD5 Reserved
0xFFD2, 0xFFD3 ATD [1oit | ATDCTL2 (ASCIE) [oxo0p2
XFFDO. OXFFDT T not needed for Lab5 or
OxFFCE, OxFFCF PortJ | 1 bit | PIEP (PIEP7-6) \ 0x00CE this lecture
OXFFCC, 0xFFCD Reserved
OXFFCA, OXFFCB Reserved
OxFFC8, 0xFFC9 Reserved
OxFFC6, OxFFC7 CRG PLL lock | 1 bit | PLLCR (LOCKIE) \ 0x00C6
OxFFC4, OXFFC5 CRG self clock mode | 1bit | PLLCR (SCMIE) \ 0x00C4
OxFFBA to 0xFFC3 Reserved
OxFFBS, OxFFB9 FLASH it FCNFG (CCIE, CBEIE) 0x0088
OxFFB6, 0xFFB7 CAN wake-up™ 1 bit CANRIER (WUPIE) 0x00B6
OxFFB4, OXFFBS CAN errors’ Ibit | CANRIER (CSCIE, OVRIE) 0x00B4
O0xFFB2, 0xFFB3 CAN receive’ I bit CANRIER (RXFIE) 0x00B2
OXFFBO, OxFFB1 CAN transmit’ 1 bit CANTIER (TXEIE[2:0]) 0x0080
OxFF90 to OxFFAF Reserved
OxFFSE, OxFF8F Port P | 1 bit | PIEP (PIEP7-0) \ 0x008E
OxFF8C, 0xFFaD Reserved
0xFF8C, 0xFF8D PWM Emergency Shutdown [1t | PWMSDN(PWMIE) | oxoosc
OxFF8A, OxFF8B VREG LVI | 1 bit | CTRALO (LVIE) \ 0x008A
0xFF80 to OxFF89 Reserved
~NoT available o MCUSTZGT Famly members
School of Computing
Uni ity of Utah 5 CS 5780
niversity o a

Thread Code

* Admittedly somewhat silly & review from last lecture

int Sub(int j) { int i;

PTM = 1;
i=j+1;
return(i); }

void ProgA() { int i;

// Port M

i=5;
while(1) {
PTM = 2;

i = Sub(i); }}
void ProgB() { int i;
i=6;
while(1) {
PTM = 4;
i = Sub(i); }}

PTM assignment used

to provide external visibility

of the running thread

Use of one-hot code on PortM
pins is just a random choice

Key is that both ProgA & ProgB

threads run forever

Hence preemptive scheduler is needed

School of Computing
!yj University of Utah

CS 5780

Page 3

Setting up the TCB

struct TCB

{ struct TCB *Next; /* Link to Next TCB x/
unsigned char *SP; /* Stack Pointer when idle x*/
unsigned short Id; /* output to PortT */
unsigned char MoreStack[49]; /* more stack */
unsigned char CCR; /* Initial CCR */
unsigned char RegB; /* Initial RegB */
unsigned char RegA; /* Initial RegA x/

unsigned short RegX; /* Initial RegX */
unsigned short RegyV; /* Initial RegY */
void (*PC) (void); /* Initial PC */
3
typedef struct TCB TCBType;

typedef TCBIype * TCBPtr; see anything fishy so far?

School of Computing
!yj University of Utah 7 CS 5780

Port Mvs. Port T

o Essential difference between program & thread
= program is just the code
» note that code has no state
» it’s just a specification of what will happen if it is executed
= thread is an execution instance

» inherently has state
¢ In this case Initlal state can be seen In the code
* subsequent state will depend
- TCB values if the thread isn’t running
— TCB values and registers If the thread Is running

¢ In this simple example
= Port M is used to show which Program is being executed
= Port T is used to show which Thread is being executed
= in this case
» M will be the same for threads 1 & 2

» in general
* a thread could run more than 1 program In different thread phases

School of Computing
!w University of Utah 8 CS 5780

Page 4

Defining 3 Threads

TCBType sys[3]={

{ &syslil, /* Pointer to Next */
&sys[0].CCR, /* Initial SP */
1, /* Id */
{ 0},
0x40,0,0,0,0, /% CCR,B,A,X,Y */
ProgA 1}, /* Initial PC */
&sys[2], /* Pointer to Next */
&sys[1].CCR, /* Initial SP */
2, /* Id */
{ 0},
0x40,0,0,0,0, /* CCR,B,A,X,Y */
ProgA 1}, /* Initial PC */
&sys[0], /* Pointer to Next */
&sys[2].CCR, /* Initial SP */
4, /* Id */
{ 0},
0x40,0,0,0,0, /% CCR,B,A,X,Y */
ProgB } }; /* Initial PC */

Thread n = sys[n]

threads 1 & 2 are the same code
but work on different local data

CCR = 0x40
XIRQ disabled
IRQ enabled

Note all TCB variables values here
influence only what happens the
FIRST time the thread is executed

Why will these variables need to be
changed for subsequent executions?

V)

School of Computing
University of Utah

CS 5780

Preemptive Thread Scheduler in C

TCBPtr RunPt;
void main(void) {

/* Pointer to current thread */

DDRT = OxFF; /* Output running thread on Port T */
DDRM = OxFF; /* Output running program on Port M */
RunPt = &sys[0]; /% Specify first thread */

asm sei

TFLG1 = 0x20; /* Clear C5F */

TIE = 0x20; /* Arm CS5F */

TSCR1 = 0x80; /* Enable TCNT*/

TSCR2 = 0x01; /* 2MHz TCNT */

TIOS |= 0x20; /* Output compare */

TC5 = TCNT+20000;
PTT = RunPt->Id;
asm 1ldx RunPt
asm 1lds 2,x
asm cli
asm rti
} /* Launch First Thread */

)

School of Computing
University of Utah

CS 5780

Page 5

Preemptive Thread Switch

void interrupt 13 ThreadSwitch() {
asm ldx RunPt
asm sts 2,X
RunPt RunPt->Next;
PTT = RunPt->Id; /* PortH=active thread */
asm 1dx RunPt
asm lds 2,x
TC5 = TCNT+20000; /* Thread runs for 10 ms */
TFLG1 = 0x20; } /* ack by clearing C5F x/

see any mistakes?
what does “interrupt 13” mean?

!'JJ School of Computing

University of Utah " CS 5780

Dynamic Thread Allocator

int create(void (*startFunc) (void), int Theld) {

TCBPtr NewPt; // pointer to new thread control block

NewPt = (TCBPtr)malloc(sizeof (TCBType)); // new TCB

if (NewPt==0)return FAIL;

NewPt->SP = &(NewPt->CCR); /* Stack Pointer when not running */
NewPt->Id = Theld; /* Visualize active thread */

NewPt->CCR = 0x40; /* Initial CCR, I=0 */
NewPt->RegB = 0; /* Initial RegB */
NewPt->RegA = 0; /* Initial RegA */
NewPt->RegX = 0; /* Initial RegX */
NewPt->RegY = 0; /* Initial RegY */
NewPt->PC = startFunc; /* Initial PC */
if (RunPt) {

NewPt->Next = RunPt->Next;

RunPt->Next = NewPt;} /* will run Next */
else

RunPt = NewPt; /* the first and only thread */
return SUCCESS;

!”J School of Computing 12 CS 5780

University of Utah

Page 6

Concluding Remarks

* Implementation of a very simple thread system
* e.g. round robin preemptive

= it’s not that hard

» but note the tricks for setting the PC to the appropriate thread
code start

¢ Preemptive scheduling

* lies at the heart of an RTOS
» but in this case we didn’t consider real time issues
* making things significantly easier

e The hard part
* designing correct embedded codes that use threads

* Note
= this code shows the general idea

= there are parts missing that will need to be coded for a full
solution - future lab?

!DJ School of Computing 13 CS 5780

University of Utah

So Far

e We’ve talked about
= thread scheduling
= synchronization
» between main & ISR’s
¢ Next
= synchronization
» between threads
= table driven scheduling

!”J School of Computing 14 CS 5780

University of Utah

Page 7

2 Threads & a communication FIFO

int Fifo_Put(char data)
{
char *Ppt;
// BEGIN CRITICAL
Ppt=PutPt;
*(Ppt++)=data;
if (Ppt == &Fifo[FIFOSIZE]) Ppt = &Fifo[0];
if (Ppt == GetPt) {
// END CRITICAL
return(0);
} else {
PutPt=Ppt;
// END CRITICAL
return(1);
}
}

what’s missing?

School of Computing
!yj University of Utah 15 CS 5780

Semaphores

e Used to implement mutual exclusion (MUTEX)
= useful for sharing, synchronization, & communication
e 2 basic operations
= classic terminology
» P 2 wait (Djikstra’s Dutch “probeer te verlagen” ::- try to grab”
» V 2 signal (“verhogen” ::= increase)
= semaphore is binary value
» 1 = free (resource avallable)
» 0 - busy (resource owned by some other thread)
* Numerous semaphore implementations
= simplest is a “Spin-Lock” version
» thread calls wait to wait (spins) for semaphore to be free
+ when semaphore Is free, wait sets semaphore to busy
* and then return
» critical
* enable interrupts during spin or preemption can’t happen
* read modify write on semaphore value must be atomic
- otherwise an Interrupt might switch threads and chaos will result
» once thread is done it calls signal to return the semaphore to free

School of Computing
!”J University of Utah 16 CS 5780

Page 8

2 Common Semaphore Types

e Binary
= simple lock
e Counter

= useful when multiple resources are available

» say tables in a restaurant
¢ >0 there Is something avallable
¢ <= 0 the place is busy
* hence the semantics

¢ Note earlier lecture error

= tst instruction is not “Test and Set”
» this instruction exists on a lot of machines
¢ useful for binary semaphores
= 6812 TST, TSTA, TSTB 2 test M,A, or B for 0 or minus
» does not change M, A, or B value - just changes the CC flags
» hence not useful for semaphore implementation

School of Computing
!yj University of Utah 17 CS 5780

MINA & MINM Instructions

= stores minimum value
» MINM [opndA, opndB] 2 min(A, B) stored in B
e CC bits N,Z,V,C set based on A-B
* opndA can be
- indexed addressing postbyte code
- e.g. preincrement simllar to “test and set”
- integer in various ranges
* opndB can be
- X, Y, SP
= useful for semaphore implementation

¢ MINA does the same thing
* but result goes to register A rather than memory

* only one REG A however so unlikely choice for semaphore
impimentation

School of Computing
!w University of Utah 18 CS 5780

Page 9

Wait &

Y

CSignal>

S=S+1

S>0

S=S-1

School of Computing
University of Utah

V)

19 CS 5780

Remember the Atomicity Functions

unsigned char begin_critical (void)
{

unsigned char SaveSP;

asm tpa

asm staa SaveSP

asm sei

return SaveSP;

}

void end_critical (unsigned char SaveSP)
{

asm ldaa SaveSP

asm tap

}

Key idea

begin - save the predicate register
in SaveSP

disable interrupts

on end — restore the predicate register

why no cli to re-enable interrupts?

School of Computing
University of Utah

)

20 CS 5780

Page 10

Spin-Lock Semaphore Wait

// decrement and spin if less than 0
// input: pointer to a semaphore
// output: none
void 0S_Wait(short *semaPt) {
unsigned char SaveSP = begin_critical();
while(*semaPt <= 0) {
end_critical (SaveSP);

asm nop
SaveSP = begin_critical();

}

(*semaPt)--;

end_critical (SaveSP);

}

key point: semaphore access is in critical section & MUTEX

!DJ School of Computing 21 CS 5780

University of Utah

Spin-Lock Semaphore Signal

// increment semaphore

// input: pointer to a semaphore

// output: none

void 0S_Signal (short *semaPt) {
unsigned char SaveSP = begin_critical();
(*semaPt)++;
end_critical (SaveSP);

}

School of Computing
!DJ University of Utah 22 CS 5780

Page 11

Spin-Lock Binary Semaphore

void bWait(char *semaphore) {
asm clra
asm loop: minm [2,x]
asm bcc loop
}
void bSignal (char *semaphore) {
(*semaphore) = 1; // compiler makes this atomic

}

clra sets new value for the semaphore
minm [2,X] is test and set in ICC version 5

not sure why this works — anybody know?

!DJ School of Computing

University of Utah 23 CS 5780

Counting Semaphore from Binary Semaphores

struct sema4
{ short value; // semaphore value

char si; // binary semaphore
char s2; // binary semaphore
char s3; // binary semaphore

};

typedef struct sema4 sema4dType;

typedef semadType * semadPtr;

void Initialize(sema4Ptr semaphore, short initial) {

semaphore->s1 = 1; // first one to bWait(sl) continues
semaphore->s2 = 0; // first one to bWait(s2) spins
semaphore->s3 = 1; // first one to bWait(s3) continues
semaphore->value=initial;

!DJ School of Computing

University of Utah 24 CS 5780

Page 12

Counting Semaphore (cont’d)

void Wait(sema4Ptr semaphore) {
bWait (&semaphore->s3); // wait if other caller here first
bWait (&semaphore->s1); // mutual exclusive access to value
(semaphore->value)--; // basic function of Wait
if ((semaphore->value)<0) {
bSignal (&semaphore->s1); // end of exclusive access
bWait (&semaphore->s2); // wait for value to go above 0
}
else
bSignal (&semaphore->s1); // end of exclusive access
bSignal (&semaphore->s3); // let other callers in

School of Computing
!w University of Utah 25 CS 5780

Counting Semaphore (cont’d)

void Signal(sema4Ptr semaphore) {
bWait (&semaphore->s1); // exclusive access
(semaphore->value) ++; // basic function of Signal
if ((semaphore->value)<=0)
bSignal (&semaphore->s2); // allow S2 spinner to continue
bSignal (&semaphore->s1); // end of exclusive access

School of Computing
!”J University of Utah 26 CS 5780

Page 13

Blocking Semaphore

¢ Useful when multiple threads are blocked waiting on a
resource

School of Computing
!w University of Utah 27 CS 5780

Blocking Semaphore Stages

Initialize:
Set the counter to its initial value.
Clear associated blocked tcb linked list.

Wait:
Disable interrupts to make atomic
Decrement the semaphore counter, S=5-1
If semaphore counter < 0, then block this thread.
Restore interrupt status.
Signal:
Disable interrupts to make atomic
Increment the semaphore counter, S=5+1
If counter < 0, wakeup one thread.
Restore interrupt status

School of Computing
!DJ University of Utah 28 CS 5780

Page 14

Initialize

S rmb 1
BlockPt rmb 2
Init tpa

psha

sei

ldaa #1

staa S

1ldx #Null

stx BlockPt

pula

tap

rts

; semaphore counter
;Pointer to threads blocked on S

;Save old value of I
;Make atomic

;Init semaphore value
;empty list

;Restore old value of I

School of Computing
!yj University of Utah

29 CS 5780

Block a Thread

; To block a thread on semaphore S, execute SWI

SWIhan 1dx RunPt
sts SP,x

;running process "to be blocked"
;save Stack Pointer in its TCB

; Unlink "to be blocked" thread from RunPt list

ldy Next,x
sty RunPt
look cpx Next,y
beq found
ldy Next,y
bra look
found 1ldd RunPt
std Next,y

;find previous thread
;next one to run
;search to find previous

;one after blocked
;1ink previous to next to run

School of Computing
!yj University of Utah

30 CS 5780

Page 15

Block and Launch Next

; Put "to be blocked'
1dy BlockPt
sty Next,x
stx BlockPt

; Launch next thread

1ldx RunPt
1lds SP,x
1dd TCNT
addd #20000
std TC5
ldaa #$20
staa TFLG1
rti

' thread on block list

;1link "to be blocked"

;clear C5F

;set SP for this new thread
;Next thread gets a full 10ms time slice
;interrupt after 10 ms

School of Computing

W university of Utah 31 CS 5780
Linked Lists
X To be ¥
Previous blocked \ Next to run
TCB TCB TCB
Y X To be D
\ Previous blocked \ Next to run
TCB TCB TCB
“To be blocked™ Alrecady blocked
X— ° Y— *————> o>
TCB TCB TCB
School of Computin
W) g 32 CS 5780

University of Utah

Page 16

Thread Rendezvous

Synchronize two threads at a rendezvous location.
S1 S2 Meaning
0 0 Neither thread at rendezvous location
-1 +1 Thread 2 arrived first, waiting for thread 1
+1 -1 Thread 1 arrived first, waiting for thread 2
Thread 1 Thread 2
signal(&S1); signal(&S2);
wait (&S2) ; wait (&S1);

This only works for 2 threads
How do you make a general n thread barrier?

School of Computing
!w University of Utah 33 CS 5780

Mutex Sharing or Non-reentrant Code

Guarantee mutual exclusive access to a critical section.

Thread 1 Thread 2 Thread 3
bwait (&S) ; bwait (&S); bwait (&S) ;
printf("bye"); printf("tchau"); printf("ciao");
bsignal (&S) ; bsignal (&S) ; bsignal (&S);
School of Computing

W) University of Utah 34 CS 5780

Page 17

2 Thread Mailbox

Thread 1 sends mail to thread 2.
Send Ack Meaning

0 0 No mail available, consumer not waiting

-1 0 No mail available, consumer is waiting

+1 -1 Mail available and producer is waiting
Producer thread Consumer thread
Mail=4; wait (&send) ;
signal (&send); read(Mail);
wait (&ack) ; signal (&ack) ;

W) University of Utah = 3 CS 5780

Bounded FIFO

¢ Multiple consumer and producer threads

PutFifo GetFifo

wait (&RoomLeft); wait (&CurrentSize);
wait (&mutex) ; wait (&mutex) ;

put data in FIFO remove data from FIFO
signal (&mutex) ; signal (&mutex) ;

signal (&CurrentSize); signal(&RoomLeft);
Could disable interrupts instead of using mutex, but would
lock out threads that don't affect the FIFO.

School of Computing
!DJ University of Utah 36 CS 5780

Page 18

Concluding Remarks

e Threads introduce concurrency
* decoupling makes thinking about complex tasks easier

= there is a cost however
» scheduling is required
» shared resources requires additional control
* semaphores are the control mechanism
* but access must be mutually exclusive

¢ Reminder
* midterm Tuesday
= don’t be late

IDJ School of Computing

University of Utah 37 CS 5780

Page 19

