
Page 1 

1 CS 5780 
School of Computing 
University of Utah 

CS/ECE 6780/5780 

Al Davis 

 Today’s topics: 

• Threads 

• basic control block 

• scheduling 

• semaphores 

• Midterm (next Tues) covers Chaps & Labs 1-5 

• sample on the web   

2 CS 5780 
School of Computing 
University of Utah 

Lab 5 Logistics 

•  Problem – not enough interrupt pins 
  our mistake for not noticing this  

•  Solution 
  sense a change on the column pins – send to IRQ 

  run the column pins to input ports 

  on interrupt 
»  ISR checks the input ports to see what happened 

  iffy bit 
»  do we have the discrete logic in stock to pull this off? 

•  checking 

3 CS 5780 
School of Computing 
University of Utah 

Implicit Threads 

•  We’ve already seen them in a sense 
  main (foreground thread) & ISR’s (background threads) 

»  hardware support for interrupts and control path change 

»  on IRQ or XIRQ control is handed to the ISR 
•  RTI returns control back to main 

  3 common types 
»  input – some input triggers IRQ or XIRQ 

»  output – some “ready to receive” signal acts as the trigger 

»  periodic – periodic: employ a timer based interrupt 

•  Often this is enough 
  when applications are primarily I or O directed 

»  typical when system is small 
•  ISR’s do most of the work 

•  main is just there to wait for an event to happen 

•   Larger projects w/ multiple modules 
  single foreground thread becomes more of a limitation 

»  so we’ll focus on multiple foreground thread issues today 

4 CS 5780 
School of Computing 
University of Utah 

Explicit Thread Semantics 

•  In general CPU land 
  threads share memory  

»  threads are concurrent 
•  hence shared memory access require ordering 

  threads have private registers and stack 

  thread scheduling 
»  supported by a multi-threaded OS scheduler 

•  In embedded land 
  microcontrollers do not have multi-threading support in the

 hardware 

  hence threads become independent control flows in
 concept 

»  but only one is running at any one time 

  all resources are shared 

  OS may not do the scheduling for you 
»  necessary “OS” functions may be in application code 



Page 2 

5 CS 5780 
School of Computing 
University of Utah 

Thread Model Illustrated 

6 CS 5780 
School of Computing 
University of Utah 

Private vs. Shared Resources 

•  Illusion or reality? 
  6812: it’s an illusion  

»  trick is to implement the abstraction to make it real 

»  all physical resources are global 

7 CS 5780 
School of Computing 
University of Utah 

Why Use Threads? 

•  Can improve program responsiveness 
  if done right and there is a functional need 

  similar to interrupt model 

•  Can improve program modularity 
  each threads function is self-contained 

  inherent decoupling from other thread actions 

  still need to appropriately synchronize the shared
 resources 

»  only one thread is every running at a time on the 6812 
•  hence mutual exclusion is guaranteed 

–  but ordering and state save/restore become critical issues 

•  Blocking is a convenient abstraction for programmers 
  thread blocks when it needs something that is not available 

»  could be a physical resource  

»  or it could be based on time 
•  e.g. thread gets a certain amount of time to be active 

8 CS 5780 
School of Computing 
University of Utah 

3 Thread States 

OS for ES systems may just be a scheduler 



Page 3 

9 CS 5780 
School of Computing 
University of Utah 

Thread Management 

•  Fully featured CPU 
  you don’t have to worry about it too much 

  just use normal thread semantics (Pthreads for example) 
»  and let the OS do it’s thing 

•  Single threaded hardware such as the 6812 
  then thread management has to be done in software 

  common tactic  linked lists 
»  single running thread  single RunPT 

•  pointer into the list of ACTIVE threads 
–  RunPT points to the only one that is in RUN state 

–  rest in ACTIVE state 

»  other lists for BLOCKED threads 
•  may be useful to have multiple BLOCKED lists  

–  one for each resource that is causing the blocked state 

10 CS 5780 
School of Computing 
University of Utah 

Simple Printer Example 

•  Threads send output to a printer 
  threads get input from a FIFO  

»  we’re ignoring print order here 
•  printf debug scenario – each print statement “Tn is at xx” 

11 CS 5780 
School of Computing 
University of Utah 

Scheduling 

•  Process to determine which thread to run next 
  decision points 

»  when RUNBLOCK state change is made 

»  or when threads are created or killed 

•  Scheduler types 
  Nonpreemptive 

»  when new thread is chosen ONLY when 
•  the current thread terminates or blocks 

  Preemptive 
»  scheduler may choose to run a new thread when the current

 thread is still active. 

»  can result in more responsive systems 
•  but require more programmer effort to create a correct system 

12 CS 5780 
School of Computing 
University of Utah 

Scheduling Metrics 

•  Minimize CPU utilization 
   minimizing busy waiting 

•  Maximize throughput 
  complete the most thread jobs per unit of time 

»  common metric for web servers 

•  Minimize turnaround time 
  minimize time from job request to job done 

•  Minimize wait time 
  e.g. minimize the time in the ACTIVE state 

•  Minimize response time 
  time from job request to job ACTIVE 

•  Maintain QoS guarantee 
  critical in real time systems 

see any conflicting constraints?  What’s missing? 
what do you care about – average, per thread, …? 



Page 4 

13 CS 5780 
School of Computing 
University of Utah 

Scheduling Strategies/Policies 

•  In order 
  simple donut shop mode – first come first served 

»  which metrics does this strategy serve? 

•  Shortest job first 
  how do you determine job length? 

•  Priority 
  based on what 

»  deadline 

»  simple predetermined value 

»  others? 

•  Round-Robin 
  simple yet reasonably fair policy 

•  Multi-Level Queue & Hybrids 
  e.g. priority levels 

»  within each level – round robin, shortest job first, … 

14 CS 5780 
School of Computing 
University of Utah 

Round-Robin Scheduler 

15 CS 5780 
School of Computing 
University of Utah 

Thread Control Block 

•  TCB stores thread management information 
  must contain 

»  pointer slot so the linked list can be formed 

»  value of it’s stack pointer 

»  stack area for local variables and saved registers 

  might also contain 
»  thread number, type, or name 

»  some sort of age information 
•  how long it’s been active 

•  how long it’s been in the run state 

•  to be used in time based priority scheduling 

»  resources that this thread has been granted 
•  if these resources are shared does it makes sense to hold them

 when blocked or active? 
–  why? 

16 CS 5780 
School of Computing 
University of Utah 

TCB Model 



Page 5 

17 CS 5780 
School of Computing 
University of Utah 

Thread Code 

•  Admittedly somewhat silly 

PTM assignment used 
to provide external visibility  
of the running thread 

Use of one-hot code on PortM 
pins is just a random choice 

Key is that both ProgA & ProgB 
threads run forever 

Hence preemptive scheduler is needed 

18 CS 5780 
School of Computing 
University of Utah 

Setting up the TCB 

see anything fishy so far? 

19 CS 5780 
School of Computing 
University of Utah 

Port M vs. Port T 

•  Essential difference between program & thread 
  program is just the code 

»  note that code has no state 

»  it’s just a specification of what will happen if it is executed 

  thread is an execution instance 
»  inherently has state 

•  in this case initial state can be seen in the code 

•  subsequent state will depend 
–  TCB values if the thread isn’t running 

–  TCB values and registers if the thread is running 

•  In this simple example 
  Port M is used to show which Program is being executed 

  Port T is used to show which Thread is being executed 

  in this case 
»  M will be the same for threads 1 & 2 

»  in general 
•  a thread could run more than 1 program in different thread phases 

20 CS 5780 
School of Computing 
University of Utah 

Defining 3 Threads 

Thread n = sys[n] 

threads 1 & 2 are the same code 
but work on different local data 

CCR = 0x40 
 XIRQ disabled 
 IRQ enabled 

Note all TCB variables values here 
influence only what happens the  
FIRST time the thread is executed 

Why will these variables need to be  
changed for subsequent executions? 



Page 6 

21 CS 5780 
School of Computing 
University of Utah 

Preemptive Thread Scheduler in C 

22 CS 5780 
School of Computing 
University of Utah 

Preemptive Thread Switch 

see any mistakes? 

23 CS 5780 
School of Computing 
University of Utah 

Dynamic Thread Allocator 

24 CS 5780 
School of Computing 
University of Utah 

Concluding Remarks 

•  Implementation of a very simple thread system 
  e.g. round robin preemptive  

  it’s not that hard 
»  but note the tricks for setting the PC to the appropriate thread

 code start 

•  Preemptive scheduling  
  lies at the heart of an RTOS 

»  but in this case we didn’t consider real time issues 
•  making things significantly easier 

•  The hard part 
  designing correct embedded codes that use threads 

•  Note 
  this code shows the general idea 

  there are parts missing that will need to be coded for a full
 solution – future lab? 


