CS/ECE 6780/5780
Al Davis

Today’s topics:
*Threads
*basic control block
*scheduling
semaphores
*‘Midterm (next Tues) covers Chaps & Labs 1-5

sample on the web

School of Computing
!yj University of Utah 1 CS 5780

Lab 5 Logistics

¢ Problem - not enough interrupt pins
= our mistake for not noticing this
e Solution
* sense a change on the column pins - send to IRQ
* run the column pins to input ports
= on interrupt
» ISR checks the input ports to see what happened
= iffy bit
» do we have the discrete logic in stock to pull this off?
* checking

School of Computing
!w University of Utah 2 CS 5780

Page 1

Implicit Threads

* We’ve already seen them in a sense
* main (foreground thread) & ISR’s (background threads)
» hardware support for interrupts and control path change

» on IRQ or XIRQ control is handed to the ISR
¢ RTI returns control back to main

= 3 common types
» input - some input triggers IRQ or XIRQ
» output - some “ready to receive” signal acts as the trigger
» periodic - periodic: employ a timer based interrupt
* Often this is enough
= when applications are primarily I or O directed
» typical when system is small
* ISR’s do most of the work
* main is just there to wait for an event to happen
* Larger projects w/ multiple modules
* single foreground thread becomes more of a limitation
» so we’ll focus on multiple foreground thread issues today

!DJ School of Computing

University of Utah 3 CS 5780

Explicit Thread Semantics

* In general CPU land

= threads share memory

» threads are concurrent
* hence shared memory access require ordering

= threads have private registers and stack
= thread scheduling
» supported by a multi-threaded 0S8 scheduler
* In embedded land

= microcontrollers do not have multi-threading support in the
hardware

* hence threads become independent control flows in
concept

» but only one is running at any one time
= all resources are shared
= OS may not do the scheduling for you
» necessary “0S” functions may be in application code

School of Computing
!”J University of Utah 4 CS 5780

Page 2

Thread Model lllustrated

| code ” data || files I | code || data || files I

T
| regis1ers | | stack I reg:slers reg-sters reg:slers
stack stack stack

thread —— g ; ; ;4—— thread

single-threaded procass multithreaded process

Figure is copyright Silberschatz, Galvin, and Gagne, 2005. (http://www.os-book.com)

School of Computing
!'JJ University of Utah 5 CS 5780

Private vs. Shared Resources

e lllusion or reality?
= 6812: it’s an illusion

» trick is to implement the abstraction to make it real
» all physical resources are global

Threadl Thread2 Thread3
A[B Stack A[B Stack A[B Stack
X Ly X Ly X >
Y_|f] Y_|f] Y _|f]
SP_1 SP_4 SP_4
PC PC PC

Threadl Thread2 Thread3
p

School of Computing
!”J University of Utah 6 CS 5780

Page 3

Why Use Threads?

e Can improve program responsiveness
= if done right and there is a functional need
= similar to interrupt model
e Can improve program modularity
= each threads function is self-contained
= inherent decoupling from other thread actions

= still need to appropriately synchronize the shared
resources
» only one thread is every running at a time on the 6812

* hence mutual exclusion Is guaranteed
- but ordering and state Irest: b critical I

¢ Blocking is a convenient abstraction for programmers
= thread blocks when it needs something that is not available
» could be a physical resource

» or it could be based on time
* e.g. thread gets a certain amount of time to be active

JJ School of Computing

University of Utah 7 CS 5780

3 Thread States

Create lhruad

Ruouru available

control OS takes control
dwtl)

Kill thread <—‘

OS for ES systems may just be a scheduler

0OS grants \ TllnL slice over,

Thread needs resource

JJ School of Computing

University of Utah 8 CS 5780

Page 4

Thread Management

¢ Fully featured CPU
* you don’t have to worry about it too much

= just use normal thread semantics (Pthreads for example)
» and let the OS do it’s thing

¢ Single threaded hardware such as the 6812
= then thread management has to be done in software

= common tactic 2 linked lists

» single running thread - single RunPT
* pointer into the list of ACTIVE threads
- RunPT points to the only one that Is In RUN state
- rest in ACTIVE state
» other lists for BLOCKED threads
* may be useful to have multiple BLOCKED lists
- one for each ce that is ing the blocked state

IDJ School of Computing

University of Utah 9 CS 5780

Simple Printer Example

¢ Threads send output to a printer

= threads get input from a FIFO

» we’re ignoring print order here
o printf debug scenarlo - each print statement “Tn Is at xx”

< RuiIPl _)
Next Next Next

Threadl Thread5 Thread2
BlockOnPrinterPt —- [Next |=Null
Thread6
BlockOnEmptyPt —- Next Next [= Null
Thread4 Thread3

BlockOnFullPt = Null

!DJ School of Computing 10 CS 5780

University of Utah

Page 5

Scheduling

¢ Process to determine which thread to run next
= decision points
» when RUN->BLOCK state change is made
» or when threads are created or killed
¢ Scheduler types
* Nonpreemptive

» when new thread is chosen ONLY when
¢ the current thread terminates or blocks

* Preemptive

» scheduler may choose to run a new thread when the current
thread is still active.

» can result in more responsive systems
* but require more programmer effort to create a correct system

School of Computing
!yj University of Utah " CS 5780

Scheduling Metrics

¢ Minimize CPU utilization
* < minimizing busy waiting
¢ Maximize throughput

= complete the most thread jobs per unit of time
» common metric for web servers

* Minimize turnaround time

* minimize time from job request to job done
¢ Minimize wait time

* e.g. minimize the time in the ACTIVE state
¢ Minimize response time

= time from job request to job ACTIVE
* Maintain QoS guarantee

= critical in real time systems

see any conflicting constraints? What’s missing?
what do you care about — average, per thread, ...?

School of Computing
!w University of Utah 12 CS 5780

Page 6

Scheduling Strategies/Policies

e In order
* simple donut shop mode - first come first served
» which metrics does this strategy serve?
e Shortest job first
* how do you determine job length?
e Priority
* based on what
» deadline
» simple predetermined value
» others?

* Round-Robin
* simple yet reasonably fair policy
* Multi-Level Queue & Hybrids
* e.g. priority levels
» within each level - round robin, shortest job first, ...

!DJ School of Computing

University of Utah 13 CS 5780

Round-Robin Scheduler

RunPt)
Threadl M Next Next

is running Threadl Thread2 Thread3

-

RunPt)
Next | Next Next

e Threadl Thread2 Thread3
is running
(RunPl\ ->
T d3 Next Next Next
hread
is running Thread] Thread2 Thread3

!yj School of Computing

University of Utah 14 CS 5780

Page 7

Thread Control Block

* TCB stores thread management information
* must contain
» pointer slot so the linked list can be formed
» value of it’s stack pointer
» stack area for local variables and saved registers
= might also contain
» thread number, type, or name
» some sort of age information
* how long it’s been active
* how long It’s been In the run state
¢ to be used in time based priority scheduling
» resources that this thread has been granted

« if these resources are shared does it makes sense to hold them
when blocked or active?

- why?

School of Computing
!yj University of Utah 15 CS 5780

TCB Model

TCB of a running thread TCB of a thread not running

CC.B. A iS(;uck pointer iS(;uck pointer
X.,Y, PC

Stack area Stack area

& _>
e CC,B.A
Local variables NLPC
Return pointers Local variables

Return pointers

School of Computing
!DJ University of Utah 16 CS 5780

Page 8

Thread Code

¢ Admittedly somewhat silly

int Sub(int j) { int i;
PIM = 1; // Port M
i= j+1;
return(i); }

void ProgA() { int i;
i=5;
while(1) {

PTM = 2;
i = Sub(i); }}

void ProgB() { int i;
i=6;
while(1) {

PTM = 4;
i = Sub(i); }}

PTM assignment used
to provide external visibility
of the running thread

Use of one-hot code on PortM
pins is just a random choice

Key is that both ProgA & ProgB
threads run forever

Hence preemptive scheduler is needed

School of Computing
!yj University of Utah

17

CS 5780

Setting up the TCB

struct TCB

{ struct TCB *Next; /* Link to Next TCB */
unsigned char *SP; /* Stack Pointer when idle */
unsigned short Id; /* output to PortT x*/
unsigned char MoreStack[49]; /* more stack */
unsigned char CCR; /* Initial CCR */
unsigned char RegB; /* Initial RegB x/
unsigned char RegA; /* Initial RegA x/
unsigned short RegX; /* Initial RegX */
unsigned short RegY; /* Initial RegY */
void (*PC) (void); /* Initial PC */

I

typedef struct TCB TCBType;

typedef TCBType * TCBPtr; see anything fishy so far?

!”J School of Computing 18 cS 5780

University of Utah

Page 9

Port Mvs. Port T

o Essential difference between program & thread
= program is just the code
» note that code has no state
» it’s just a specification of what will happen if it is executed
= thread is an execution instance

» inherently has state
¢ in this case initial state can be seen in the code

* subsequent state will depend
— TCB values If the thread Isn’t running
- TCB values and registers if the thread is running

¢ In this simple example
* Port M is used to show which Program is being executed
* Port T is used to show which Thread is being executed
= in this case
» M will be the same for threads 1 & 2

» in general
¢ a thread could run more than 1 program in different thread phases

School of Computing
!yj University of Utah 19 CS 5780

Defining 3 Threads

TCBType sys[3]1={

{ &sysli], /* Pointer to Next */
icsys [0].CCR, ;: iglt;al SP */ Thread n = sys[n]
é Zg’o 0.0.0 /% CCR,B.AX.Y */ threads 1 & 2 are the same code
Pf'ogA i e /% Init:;.a],. I,DC’*/ but work on different local data
e, AR coreouo
S e 2y XIRQ disabled
{’o} IRQ enabled
gﬁo;oio :0,0, /itlz(i:iiii%z’z/‘/ Note all TCB variables values here
{ s i[o] ’ /% Pointer to Next #/ influence only what happens the
&S);s [2] ’CCR /% Tnitial SP */ FIRST time the thread is executed
1{1’0} /* 1d %/ Why will these variables need to be
0x40’0 0.0.0 /% CCR,B.AX.Y */ changed for subsequent executions?
ProgB } }; /* Initial PC */

School of Computing
!w University of Utah 20 CS 5780

Page 10

Preemptive Thread Scheduler in C

TCBPtr RunPt;

void main(void) {
DDRT = OxFF; /*
DDRM = OxFF; /%
RunPt = &sys[0]; /=
asm sei
TFLG1 = 0x20; /*
TIE = 0x20; /*
TSCR1 = 0x80; /*
TSCR2 = 0x01; /*
TIOS |= 0x20; /*
TCS TCNT+20000;

PTT = RunPt->Id;
asm 1ldx RunPt
asm 1lds 2,x
asm cli

asm Trti

/* Pointer to current thread */

Output running thread on Port T */
Output running program on Port M */
Specify first thread */

Clear C5F */

Arm C5F =/

Enable TCNT*/
2MHz TCNT */
Output compare */

} /* Launch First Thread */

School of Computing
!'JJ University of Utah

21 CS 5780

Preemptive Thread Switch

void interrupt 13 ThreadSwitch() {

asm 1ldx RunPt
asm sts 2,x

RunPt = RunPt->Next;

PTT = RunPt->Id;
asm 1dx RunPt
asm 1lds 2,x
TC5 = TCNT+20000;
TFLG1 = 0x20; }

/* PortH=active thread */

/* Thread runs for 10 ms */
/* ack by clearing C5F */

see any mistakes?

School of Computing
!”J University of Utah

22 CS 5780

Page 11

Dynamic Thread Allocator

int create(void (*startFunc) (void), int TheId) {
TCBPtr NewPt; // pointer to new thread control block
NewPt = (TCBPtr)malloc(sizeof (TCBType)); // new TCB
if (NewPt==0)return FAIL;
NewPt->SP = &(NewPt->CCR); /* Stack Pointer when not running */

NewPt->Id = Theld; /* Visualize active thread */
NewPt->CCR = 0x40; /* Initial CCR, I=0 */
NewPt->RegB = 0; /* Initial RegB */
NewPt->ReghA = 0; /* Initial RegA */
NewPt->RegX = 0; /* Initial RegX */
NewPt->RegY = 0; /* Initial RegY */
NewPt->PC = startFunc; /* Initial PC */
if (RunPt) {

NewPt->Next = RunPt->Next;

RunPt->Next = NewPt;} /* will run Next */
else

RunPt = NewPt; /* the first and only thread */

return SUCCESS;

School of Computing
!yj University of Utah 23 CS 5780

Concluding Remarks

¢ Implementation of a very simple thread system
* e.g. round robin preemptive

= it’s not that hard

» but note the tricks for setting the PC to the appropriate thread
code start

* Preemptive scheduling

* lies at the heart of an RTOS
» but in this case we didn’t consider real time issues
* making things significantly easier

e The hard part
* designing correct embedded codes that use threads

* Note
= this code shows the general idea

= there are parts missing that will need to be coded for a full
solution - future lab?

School of Computing
!DJ University of Utah 24 CS 5780

Page 12

