
Page 1

1 CS 5780
School of Computing
University of Utah

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• Threads

• basic control block

• scheduling

• semaphores

• Midterm (next Tues) covers Chaps & Labs 1-5

• sample on the web

2 CS 5780
School of Computing
University of Utah

Lab 5 Logistics

•  Problem – not enough interrupt pins
  our mistake for not noticing this

•  Solution
  sense a change on the column pins – send to IRQ

  run the column pins to input ports

  on interrupt
»  ISR checks the input ports to see what happened

  iffy bit
»  do we have the discrete logic in stock to pull this off?

•  checking

Page 2

3 CS 5780
School of Computing
University of Utah

Implicit Threads

•  We’ve already seen them in a sense
  main (foreground thread) & ISR’s (background threads)

»  hardware support for interrupts and control path change

»  on IRQ or XIRQ control is handed to the ISR
•  RTI returns control back to main

  3 common types
»  input – some input triggers IRQ or XIRQ

»  output – some “ready to receive” signal acts as the trigger

»  periodic – periodic: employ a timer based interrupt

•  Often this is enough
  when applications are primarily I or O directed

»  typical when system is small
•  ISR’s do most of the work

•  main is just there to wait for an event to happen

•  Larger projects w/ multiple modules
  single foreground thread becomes more of a limitation

»  so we’ll focus on multiple foreground thread issues today

4 CS 5780
School of Computing
University of Utah

Explicit Thread Semantics

•  In general CPU land
  threads share memory

»  threads are concurrent
•  hence shared memory access require ordering

  threads have private registers and stack

  thread scheduling
»  supported by a multi-threaded OS scheduler

•  In embedded land
  microcontrollers do not have multi-threading support in the

 hardware

  hence threads become independent control flows in
 concept

»  but only one is running at any one time

  all resources are shared

  OS may not do the scheduling for you
»  necessary “OS” functions may be in application code

Page 3

5 CS 5780
School of Computing
University of Utah

Thread Model Illustrated

6 CS 5780
School of Computing
University of Utah

Private vs. Shared Resources

•  Illusion or reality?
  6812: it’s an illusion

»  trick is to implement the abstraction to make it real

»  all physical resources are global

Page 4

7 CS 5780
School of Computing
University of Utah

Why Use Threads?

•  Can improve program responsiveness
  if done right and there is a functional need

  similar to interrupt model

•  Can improve program modularity
  each threads function is self-contained

  inherent decoupling from other thread actions

  still need to appropriately synchronize the shared
 resources

»  only one thread is every running at a time on the 6812
•  hence mutual exclusion is guaranteed

–  but ordering and state save/restore become critical issues

•  Blocking is a convenient abstraction for programmers
  thread blocks when it needs something that is not available

»  could be a physical resource

»  or it could be based on time
•  e.g. thread gets a certain amount of time to be active

8 CS 5780
School of Computing
University of Utah

3 Thread States

OS for ES systems may just be a scheduler

Page 5

9 CS 5780
School of Computing
University of Utah

Thread Management

•  Fully featured CPU
  you don’t have to worry about it too much

  just use normal thread semantics (Pthreads for example)
»  and let the OS do it’s thing

•  Single threaded hardware such as the 6812
  then thread management has to be done in software

  common tactic  linked lists
»  single running thread  single RunPT

•  pointer into the list of ACTIVE threads
–  RunPT points to the only one that is in RUN state

–  rest in ACTIVE state

»  other lists for BLOCKED threads
•  may be useful to have multiple BLOCKED lists

–  one for each resource that is causing the blocked state

10 CS 5780
School of Computing
University of Utah

Simple Printer Example

•  Threads send output to a printer
  threads get input from a FIFO

»  we’re ignoring print order here
•  printf debug scenario – each print statement “Tn is at xx”

Page 6

11 CS 5780
School of Computing
University of Utah

Scheduling

•  Process to determine which thread to run next
  decision points

»  when RUNBLOCK state change is made

»  or when threads are created or killed

•  Scheduler types
  Nonpreemptive

»  when new thread is chosen ONLY when
•  the current thread terminates or blocks

  Preemptive
»  scheduler may choose to run a new thread when the current

 thread is still active.

»  can result in more responsive systems
•  but require more programmer effort to create a correct system

12 CS 5780
School of Computing
University of Utah

Scheduling Metrics

•  Minimize CPU utilization
   minimizing busy waiting

•  Maximize throughput
  complete the most thread jobs per unit of time

»  common metric for web servers

•  Minimize turnaround time
  minimize time from job request to job done

•  Minimize wait time
  e.g. minimize the time in the ACTIVE state

•  Minimize response time
  time from job request to job ACTIVE

•  Maintain QoS guarantee
  critical in real time systems

see any conflicting constraints? What’s missing?
what do you care about – average, per thread, …?

Page 7

13 CS 5780
School of Computing
University of Utah

Scheduling Strategies/Policies

•  In order
  simple donut shop mode – first come first served

»  which metrics does this strategy serve?

•  Shortest job first
  how do you determine job length?

•  Priority
  based on what

»  deadline

»  simple predetermined value

»  others?

•  Round-Robin
  simple yet reasonably fair policy

•  Multi-Level Queue & Hybrids
  e.g. priority levels

»  within each level – round robin, shortest job first, …

14 CS 5780
School of Computing
University of Utah

Round-Robin Scheduler

Page 8

15 CS 5780
School of Computing
University of Utah

Thread Control Block

•  TCB stores thread management information
  must contain

»  pointer slot so the linked list can be formed

»  value of it’s stack pointer

»  stack area for local variables and saved registers

  might also contain
»  thread number, type, or name

»  some sort of age information
•  how long it’s been active

•  how long it’s been in the run state

•  to be used in time based priority scheduling

»  resources that this thread has been granted
•  if these resources are shared does it makes sense to hold them

 when blocked or active?
–  why?

16 CS 5780
School of Computing
University of Utah

TCB Model

Page 9

17 CS 5780
School of Computing
University of Utah

Thread Code

•  Admittedly somewhat silly

PTM assignment used
to provide external visibility
of the running thread

Use of one-hot code on PortM
pins is just a random choice

Key is that both ProgA & ProgB
threads run forever

Hence preemptive scheduler is needed

18 CS 5780
School of Computing
University of Utah

Setting up the TCB

see anything fishy so far?

Page 10

19 CS 5780
School of Computing
University of Utah

Port M vs. Port T

•  Essential difference between program & thread
  program is just the code

»  note that code has no state

»  it’s just a specification of what will happen if it is executed

  thread is an execution instance
»  inherently has state

•  in this case initial state can be seen in the code

•  subsequent state will depend
–  TCB values if the thread isn’t running

–  TCB values and registers if the thread is running

•  In this simple example
  Port M is used to show which Program is being executed

  Port T is used to show which Thread is being executed

  in this case
»  M will be the same for threads 1 & 2

»  in general
•  a thread could run more than 1 program in different thread phases

20 CS 5780
School of Computing
University of Utah

Defining 3 Threads

Thread n = sys[n]

threads 1 & 2 are the same code
but work on different local data

CCR = 0x40
 XIRQ disabled
 IRQ enabled

Note all TCB variables values here
influence only what happens the
FIRST time the thread is executed

Why will these variables need to be
changed for subsequent executions?

Page 11

21 CS 5780
School of Computing
University of Utah

Preemptive Thread Scheduler in C

22 CS 5780
School of Computing
University of Utah

Preemptive Thread Switch

see any mistakes?

Page 12

23 CS 5780
School of Computing
University of Utah

Dynamic Thread Allocator

24 CS 5780
School of Computing
University of Utah

Concluding Remarks

•  Implementation of a very simple thread system
  e.g. round robin preemptive

  it’s not that hard
»  but note the tricks for setting the PC to the appropriate thread

 code start

•  Preemptive scheduling
  lies at the heart of an RTOS

»  but in this case we didn’t consider real time issues
•  making things significantly easier

•  The hard part
  designing correct embedded codes that use threads

•  Note
  this code shows the general idea

  there are parts missing that will need to be coded for a full
 solution – future lab?

