CS/ECE 6780/5780

Al Davis

*Volatile variables

11
P

*6812 registers and their side effects

P

IDJ School of Computing

University of Utah 1 CS 5780

LAB4

* Essentials
= do 32 bit arithmetic
» note - 32 bit unsigned In write-up Is an error
+ see emall from Torrey
» turns out to be easler than we thought
* not a bad thing since hopefully this will help people get caught up
= matrix keypad interface
» note the matrix keypad will get used in other labs as well

!BJ School of Computing

University of Utah 2 CS 5780

Device Register Access

* Memory mapped device registers
= common embedded controller tactic
» 6812 maps device registers Into RAM
¢ In both C and assembly
= register accesses look like global variable accesses
¢ But (and it’s a big but)
= registers do not act like RAM
» since many registers are 1/0O ports or thelr controls
= resulting in some potential weirdness
» each read may return a different value
* due to changing Input values
» writes may be ignored
* due to complier optimizations
» reads and writes may have side effects
+ since they are actually 1/0 commands
+ which Iimplies they SHOULD be In-order and happen exactly once

!y) School of Computing 3 CS 5780

University of Utah

Optimizing Compilers

* Optimization goal
= generate fast code
* Numerous optimizations
= complie time execution
» xpressions -> single
= dead code elimination
» if statement optimization
+ may determine that certain code won’t be reachable
+ so that code block will not be generated
- &g two reads wio Intervening write & one of them can be removed

- oops - If the read Is to a device register then the read values could be different
and dependent conditions may actually be Independent

» multiply by power of 2 constant

Into a shift
» killers (more detalls next)
. memory op
. PP ly i memory op
» hi tly used In regl
= Usually good but can spell disaster
» when lled to devl gl variables
School of Computing
W university of Utah 4 CS 5780

Page 1

Memory Optimization Hazards

¢ Eliminate redundant memory operations
= series of reads w/ no intervening writes to a variable
» cache first read In a register & eliminate the rest
* oops - for a device Input each read could have a different value
+ and you care about them all
= series of writes w/no intervening reads
» no point In writing something that Isn't read
« eliminate all but the last write
+ oops - If these are device outputs then you want them all to be done
* Memory operation reordering
= different varlables map to different addresses
= should be OK to reorder independent reads and writes
» last time we learned

« first set PPSx then PERx (set sense and then enable)
« different - can
- PERx then PPSx can be dangerous

School of Computing
U] University of Utah s CS 5780

Bad Optimization Example

You write this code:

extern char MY_PTJ @ (0x00000268) ;
void Out(unsigned char data) {
MY_PTJ = 0;
PTT=data;
MY_PTJ = 1;
}

CodeWarrior for HCS12 gives you this:

STAB _PTT
LDAB #1

STAB MY_PTJ Why did the compiler
RTS think this was OK?

What is wrong?

School of Computing
!'JJ University of Utah 6 CS 5780

Better Register Declaration

extern volatile char MY_PTJ @ (0x00000268)

3

void Out(unsigned char data) {

Accessing Device Registers

* 2 methods for doing It right
= write assembly code
» doesn’t op this

MY_PTJ = 0; = use volatile declarations in C
PTT=data; ¢ It’s a personal choice
MY_PTJ = 1; * if you hate assembly
} » then It's | : to y devi gl InC
For the same C code, CodeWarrior for HCS12 gives you this: without volatile
» It’s also Imp to main and
CLR MY_PTJ ISR routines In C code as well
STAB _PTT * What this means for you
LDAB #1 = ALWAYS make a varlable volatile If It:
STAB MY_PTJ » roprosents a d st
RTS » Is used to communicate with ISR’s
» is u“d ‘0 i te betv th d
Is it right now? = What happens If you forget?
» why?
School of Computing School of Computing
W) university of Utah 7 CS 5780 W university of Utah 8 CS 5780

Page 2

Volatile Semantics in C

¢ volatile is a “storage qualifier”
= like const

» It lets you tell the thi peclal about the
variable
* const < value will not change
* volatile & do not memory g to/from
this varlable

* Any C type can be marked as volatile
= including composite types
» structs and arrays
= or composite types
» can contaln volatlle flelds or elements

Volatile Semantics for the Compiler

!DJ School of Computing

University of Utah 9 CS 5780

¢ Volatile rules the compiler must obey
= every volatile variable assignment in C
» must result In a store to that varlable In the generated code
= every volatile variable read in C
» must result In a load from that variable In the generated code
= the order of volatlle varlable accesses In C
» must be preserved In the object code
* Note however
= that there is no guarantee about the relative ordering
» of volatile and non-volatile accesses
* The essence
= volatile means DON’T OPTIMIZE to the compiler

!'JJ School of Computing

University of Utah 10 CS 5780

Volatile Non-volatile Reordering

* Your code uses buffer_ready to tell an Interrupt handler
that the buffer has been Initlalized

volatile int buffer_ready;
char buffer [BUF_SIZE];

void buffer_init() {
int i;
for (i=0; i<BUF_SIZE; i++)
buffer[i] = 0;
buffer_ready = 1;
}

* Compiler can move the store to buffer ready above the
initialization loop
= solutions?

Volatile != Atomic

mj School of Computing 1 CS 5780

University of Utah

* Volatlle varlables preserve ordering

= but do not guarantee atomicity
* For correct interrupt synchronization

= you need both order preservation & atomicity
* Hence

= use volatlles to preserve order

= and guarantee atomicity with

begin_critical()
initialize buffer and set ready

end_critical()

mj School of Computing 12 CS 5780

University of Utah

Const Volatile

* Does this make sense?

const volatile int Xx;

* What does this tell the complier

!DJ School of Computing

University of Utah 13 CS 5780

Volatile and Pointers

* You can make a pointer to a volatile int
int volatile *x;
* You can make a volatlle pointer to an Int
int *volatile x;
¢ You can make a volatile pointer to a volatile int
int volatile *volatile Xx;

* How do you know which of these to use?
= even good bedded d | have to think hard about
these issues
= fall-back when these issues make you sick
» assembly 2 do it my way
» typedef’s can help avold some confusion

L

!'JJ School of Computing

University of Utah 14 CS 5780

Concluding Remarks

* Belabored something that seems simple
= why?
» If a large number of people have written buggy code
» then you might too

» common solution to most of these bugs was
* treating device registers as normal variables

- they aren’t the same
- VO Is all about side-effects
- hence order and P is

* hence the nerdly focus
* Bottom line
= learn to love volatile

Note: midterm is a week from next Tuesday
— it would be wise to be caught up on labs & reading

mj School of Computing 15 CS 5780

University of Utah

Page 4

