
Page 1

1 CS 5780
School of Computing
University of Utah

CS/ECE 6780/5780

Al Davis

 Today’s topics:

• Volatile variables

• compiler optimizations

• 6812 registers and their side effects

2 CS 5780
School of Computing
University of Utah

LAB4

•  Essentials
  do 32 bit arithmetic

»  note – 32 bit unsigned in write-up is an error
•  see email from Torrey

»  turns out to be easier than we thought
•  not a bad thing since hopefully this will help people get caught up

  matrix keypad interface
»  note the matrix keypad will get used in other labs as well

Page 2

3 CS 5780
School of Computing
University of Utah

Device Register Access

•  Memory mapped device registers
  common embedded controller tactic

»  6812 maps device registers into RAM

•  In both C and assembly
  register accesses look like global variable accesses

•  But (and it’s a big but)
  registers do not act like RAM

»  since many registers are I/O ports or their controls

  resulting in some potential weirdness
»  each read may return a different value

•  due to changing input values

»  writes may be ignored
•  due to compiler optimizations

»  reads and writes may have side effects
•  since they are actually I/O commands

•  which implies they SHOULD be in-order and happen exactly once

4 CS 5780
School of Computing
University of Utah

Optimizing Compilers

•  Optimization goal
  generate fast code

•  Numerous optimizations
  compile time execution

»  constant expressions  single constant value

  dead code elimination
»  if statement optimization

•  may determine that certain code won’t be reachable

•  so that code block will not be generated
–  e.g. two reads w/o intervening write  one of them can be removed

–  oops – if the read is to a device register then the read values could be different
 and dependent conditions may actually be independent

»  multiply by power of 2 constant
•  optimized into a shift operation

»  killers (more details next)
•  eliminate redundant memory operations

•  reorder apparently independent memory operations

»  caching frequently used variables in registers

  Usually good but can spell disaster
»  when applied to device register variables

Page 3

5 CS 5780
School of Computing
University of Utah

Memory Optimization Hazards

•  Eliminate redundant memory operations
  series of reads w/ no intervening writes to a variable

»  cache first read in a register & eliminate the rest
•  oops – for a device input each read could have a different value

•  and you care about them all

  series of writes w/no intervening reads
»  no point in writing something that isn’t read

•  eliminate all but the last write

•  oops – if these are device outputs then you want them all to be done

•  Memory operation reordering
  different variables map to different addresses

  should be OK to reorder independent reads and writes
»  last time we learned

•  first set PPSx then PERx (set sense and then enable)

•  different variables – compiler can reorder
–  PERx then PPSx can be dangerous

6 CS 5780
School of Computing
University of Utah

Bad Optimization Example

What is wrong?

Why did the compiler
think this was OK?

Page 4

7 CS 5780
School of Computing
University of Utah

Better Register Declaration

Is it right now?

8 CS 5780
School of Computing
University of Utah

Accessing Device Registers

•  2 methods for doing it right
  write assembly code

»  compiler doesn’t optimize this

  use volatile declarations in C

•  It’s a personal choice
  if you hate assembly

»  then it’s impossible to reliably access device registers in C
 without volatile

»  it’s also impossible to reliably synchronize between main and
 ISR routines in C code as well

•  What this means for you
  ALWAYS make a variable volatile if it:

»  represents a device register

»  is used to communicate with ISR’s

»  is used to communicate between threads

  What happens if you forget?
»  why?

Page 5

9 CS 5780
School of Computing
University of Utah

Volatile Semantics in C

•  volatile is a “storage qualifier”
  like const

»  it lets you tell the compiler something special about the
 variable

•  const  value will not change

•  volatile  do not optimize memory operations involving to/from
 this variable

•  Any C type can be marked as volatile
  including composite types

»  structs and arrays

  or composite types
»  can contain volatile fields or elements

10 CS 5780
School of Computing
University of Utah

Volatile Semantics for the Compiler

•  Volatile rules the compiler must obey
  every volatile variable assignment in C

»  must result in a store to that variable in the generated code

  every volatile variable read in C
»  must result in a load from that variable in the generated code

  the order of volatile variable accesses in C
»  must be preserved in the object code

•  Note however
  that there is no guarantee about the relative ordering

»  of volatile and non-volatile accesses

•  The essence
  volatile means DON’T OPTIMIZE to the compiler

Page 6

11 CS 5780
School of Computing
University of Utah

Volatile Non-volatile Reordering

•  Your code uses buffer_ready to tell an interrupt handler
 that the buffer has been initialized

•  Compiler can move the store to buffer_ready above the
 initialization loop
  solutions?

12 CS 5780
School of Computing
University of Utah

Volatile != Atomic

•  Volatile variables preserve ordering
  but do not guarantee atomicity

•  For correct interrupt synchronization
  you need both order preservation & atomicity

•  Hence
  use volatiles to preserve order

  and guarantee atomicity with

begin_critical()

initialize buffer and set ready

end_critical()

Page 7

13 CS 5780
School of Computing
University of Utah

Const Volatile

•  Does this make sense?

•  What does this tell the compiler

14 CS 5780
School of Computing
University of Utah

Volatile and Pointers

•  You can make a pointer to a volatile int

•  You can make a volatile pointer to an int

•  You can make a volatile pointer to a volatile int

•  How do you know which of these to use?
  even good embedded developers have to think hard about

 these issues

  fall-back when these issues make you sick
»  assembly  do it my way

»  typedef’s can help avoid some confusion

Page 8

15 CS 5780
School of Computing
University of Utah

Concluding Remarks

•  Belabored something that seems simple
  why?

»  if a large number of people have written buggy code

»  then you might too

»  common solution to most of these bugs was
•  treating device registers as normal variables

–  they aren’t the same

–  I/O is all about side-effects

–  hence order and instance preservation is important

•  hence the nerdly focus

•  Bottom line
  learn to love volatile

Note: midterm is a week from next Tuesday
 – it would be wise to be caught up on labs & reading

