CS/ECE 6780/5780

Al Davis

Today’s topics:
*‘Debouncing switches
*e.g. matrix keypad
*lab4 issues

Basic Concepts

* Switches are often mechanical
= move something and
» contact Is made or broken
= in either case
» metal rebounds
+ causing “hash” osclilations In the observed signal
+ source of massive ISR confusion H you'’re not careful
* Problem
= make multiple events look like one event
= usual solution
» hardware debounce
* extra loglc
» software debounce
« focus for this weeks lab
* See “debouncing.pdf” on the class web site
= figures In the next few slides come from this document

» to Jack G: for an g read
School of Computing School of Computing
W) university of Utah ! Cs 5780 W) university of Utah 2 CSs 5780

Switch Anatomy

* Lots of types
= SPST, SPDT, DPDT, and beyond
* How long does a switch bounce

= varies with switch type and often assymetric w/ open vs.
close
» typlcal a few ms but can be as bad as 100’s of ms
» also varies even for a single switch
* min to max can vary by 2x or so
* Ganssle’s findings (bounce times in usec)

12000 —

School of Computing
mj Unlversity of Ul:l: 3 CS 5780

Switches and TTL Sampling Levels

* Allasing happens In the analog to digital transition

r 81 2000/ 80.02 2,002 snal FatsTOR

]

JS oo s by

Switch A at 2 msec/div. Note 8 msec of unsetled behavior before it finally decides to

a1 z0.00/

P,
TTLno manW] .8 — 2v supposed to
be illegal for TTL
Switch C — 50 usec/div and 200 mV/div.

School of Computing
mj Unlversity of Ulahl 4 CS 5780

Switch G

A1 2009/ c 0.00s 1.00%/ Fat RUN
:]
i i - r i
u :
£ H i
H !
H I
H I
0 R R R R I
H |
I
]
= 0.000 > 3 + 180m= at = 2.100ms ls8t = 450.7 Hz
Switch G. One super narrow pul:e followed by 2 msec of nothingness. A sure-fire ISR
confuser.
DJ School of Computing s CS 5780
University of Utah

Switch O

A1 2005/ £ 77sg 100/

Pat RUN

JJ School of Computing

University of Utah 6 CS 5780

Switch Q

£ BSSZ 2008/

t1 = 1.320ma t2 = 0 00D = 4t = -1.32Cm= CvH:
Switch Q —when released, it goes high for 480 usec before gene) ating 840 usec of hash,
a sure way to blow an interrupt system mad if poorly designed.

School of Computing

JJ Unlversity of Utah 7 CS 5780

Bottom Line

* In general
= characterize the switches before you use them
» a thorough test takes a lot of time
« vary how you activate
+ take scope traces
+ use multiple versions of the same switch
= PCB mounted swltches are oﬂen better than these
hat pathol P
» but It Is wise to check
= weird behavior or intermittent failure
» t your deb

JJ School of Computing s CS 5780

University of Utah

Page 2

SR Latch HW Debouncer

SR Software Equivalent

ToCPU

= Why does it work?

What switch property is required?

* Simplest possible code
= examine both inputs
» one will bounce the other won’t
» simple loop

if (switch_hi())state=ON;
if (switch_lo()) state=OFF;

» problems
* 2 Input capture pins required
« SPDT switches are more costly and bulky
- rarely found on PCB’s these days

Downside?

School of Computing School of Computing

W) university of Utah ° €S 5780 W) university of Utah 1 S 5780
RC Debouncer A Better RC Debouncer

¢ Simple * Why Is this one better?

= but hides a lot of complexity

= need to characterize hash time to know desired RC time

constant
Vee R1
What’s tricky here? R1
R2 R2
\ Lo
c

School of Computing School of Computing

()] University of Utah 1 CS 5780 ()] University of Utah 12 CS 5780

Page 3

Schmitt Trigger Debounce

2R Schmitt Debounce

+5V 74HC14 & 74HC14
S > 5
10 kQ Sompmies : v Computer
1
Output | Input 10kQ Output ||
port nput port
20
(e
}J o
Touch Release st s Relegse Assume noisy -
P~ . 4
witoue — “ aHCOs ‘ s v AT i
v, /wuh(‘ +5V v, —\W‘ 5V 1 It g
OV With C +OV N N 74HC04 Output S0V
With C WithC 133438 TS JaHC14 Ouput ‘;z
Output . e YV utput ; - Y !
r Without C OV P Without C| | HOV
— —
Sms Sms s - .
Similar slew decoupling issue but w/ hysteresis
School of Computing School of Computing
o = 1 o = 14
!yj University of Utah 3 CS 5780 !yj University of Utah CS 5780
Switch Interfaces 6812 Ports

* HW debouncers make SW’s life easler
= but adds to cost
= s0 let’s conslder a direct SPST Interface w/ SW debounce

» 6812 style
35V
I Computer| |Switch|Output
10kQ OH Output P P!
Input port Open +5V
Switch l Tk Closed| 0V
+5V
sitch « |
Switch lon Computer| |Switch|Output
— Output One oV
Input port pen
10kQ Tor Closed| +5V

School of Computing 15
University of Utah

V)

CS 5780

* Ports AD,J, M,P,Sand T
= support both internal pull-ups and pull-down resistors
» note to use port AD as a digital port
« corresponding bits In ATDDIEN must be set
= Port Pull Select Register must be set
» PPSAD, PPSJ, PPSP, PPSM, PPSS, PPST
* pull-up =0, pull-down=1
= Pull Enable Register
» PERAD, PERJ, PERP, PERM, PERS, PERT
+ enables the pull-up or pull-down function
= Note
» first set PPSx then PERx

» If

wrong polarity

t then get signals In possibly the

School of Computing 16
University of Utah

V)

CS 5780

Page 4

Port AD Initialization Example

+5V

Switch I
] 6812
PAD1

PADO

S»\ilchl

void PortAD_Init(void){
ATDDIEN |= 0x03; // PAD1-0 digital I/0
DDRAD &= ~0x03; // PAD1-0 inputs

PPSAD |= 0x02; // pull-down on PAD1
PPSAD &= ~0x01; // pull-up on PADO
PERAD |= 0x03; // enable pull-up and pull-down

!”, School of Computing

University of Utah 17 CS 5780

Software Debounce Model

* Assume bounce time <10ms

+5V
Microcomputer Touch Release
10kQ \
6812 PT3/IC3 V V
— —
ol 10ms 10 ms
Wai for press @
— —

Not pressed

Wait 10 ms
GIP)

!”J School of Computing

University of Utah 18 CS 5780

Software Debounce w/ Gadfly Timer

void Key_WaitPress(void){
while(PTT&0x08); // PT3=0 when pressed
Timer_WaitiOms(1); // debouncing

}

void Key_WaitRelease(void){
while ((PTT&0x08)==0); // PT3=1 -> released
Timer_Wait10ms(1); // debouncing

}

void Key_Init(void){
Timer_Init();
DDRT &="0x08; // PT3 is input

}

mj School of Computing 19 CS 5780

University of Utah

SW Debounce Version 2

Read switch

Start timer
Old=switch

This version returns a new
value every time switch position
changes

Unified press and release functions
Delay is over 10 siwalt
s wa

Same <10ms hash assumption
Delay not over

R Same
Old==switch

TR

Different

@J School of Computing 20 CS 5780

University of Utah

Page 5

Timer Control & Output Compare

* Use
= create squarewaves, g p s
delays, generate periodic Interrupts
* 6812 has 8 output compare modules
= Each module has
» external ouput pin (Ocn)
» flag bit, Interrupt mask bit, and 16-bit p p Ist
» force output compare bit (FOCn)
» two mode bits (OMn Oin)

t time

Table 15-9. Compare Result Output Action

OMx OLx Action
0 0 Timer disconnected from output pin logic
0 1 Toggle OCx output line
1 [Clear OCx output line to zero
1 1 Set OCx output line to one

MC9S12 reference manual

School of Computing
University of Utah

V)

21 CS 5780

Output Compare Process Example

* Basic steps
= read the current 16-bit TCNT
= calculate TCNT+delay
= set output p ter to TCNT+delay
= clear the output compare flag
= walt for the output compare flag to be set

* Essentially another SW debounce approach

School of Computing

University of Utah 22

U)

CS 5780

Output Compare

void Key_Init(void) {

TIOS |= 0x20; // enable 0C5 (see Chapter 6)
TSCR1 = 0x80; // enable
TSCR2 = 0x01; // 500 ns clock

DDRT &="0x08;} // PT3 is input
unsigned char Key_Read(void){
unsigned char old;
old = PTT&0x08;
TC5 = TCNT+20000; // 10ms delay
TFLG1 = 0x20; // Clear CSF
while ((TFLG1&0x20)==0){ // 10ms
if (01d!=(PTT&0x08)){ // changed?
old = PTT&0x08; // New value
TC5 = TCNT+20000;}} // restart delay
return(old); }

// Current value

School of Computing

University of Utah 23

CS 5780

V)

Debouncing Multiple Switches

#define MAX_CHECKS 10
uint8_t Debounced_State;
uint8_t State[MAX_CHECKS];
uint8_t Index;

void DebounceSwitches(void) {
uint8_t i,j;
State[Index] = ReadKeys();
Index++;
j = Oxff;
for (i=0;1i<MAX_CHECKS-1;i++) {
j &= Statelil;
}
Debounced_State "= j;
if (Index >= MAX_CHECKS) { Index = 0; }
}

Based on " My favorite software debouncers” by Jack Gannsle.

School of Computing

University of Utah 24

CS 5780

V)

Page 6

Interfacing Multiple Keys

3 Approach View

* 3 basic methods
= direct - input pin per switch

» Is what happ If you have more switches than
input pins
» upside - you can lze every p bl bination
* note this doesn’t matter In a keyboard where one switch Is pressed

at a time
- or very few - e.g. Shift, CTL, FN, ...
= scanned
» keys belong to a matrix
* know the row and column and you know which key
* 6812 drives one row low at each step (enables the row)
- column values Indicate which key In that row was pushed
= multiplexed
» same idea but uses less pins (e.g. logzn)
* put out binary value of the row
+ demux generates the one-hot code simllar to the scanned mode
* mux on the way back In does the symmetric function

Direct +5 Scanned Multiplexed

ol Demux
Out3x = =

Ou2 Ou (T f,
Outl I Oull I’ T/ !
Outd Out

o e
In3

n3 H [’
n2 In2 E!:’Lr

Inl Inl

n0 In0 |- Mox
Row Out3 Out2 Outl Out0d
3 0 HiZ HiZ Hiz
2 Hiz 0 HiZ HiZ
1 HiZ HiZ 0 Hiz
0 HiZ HiZ HiZ 0

L

Row [Out3 Out2 Outl Out0] 15 14 ... 0
15 1 1 1 1 0 HiZ ... HZ
14 1 1 1 0 Hiz 0 ... Hiz
o | o o o o |HZ HZ .. o0

W) Someercs o vhen™ = cs s7a0 W) Sy o vhen™ - cs 5780
4x4 Scanned Keypad 4x4 Keypad

Bit7 Row 3
I = = =)
Row 2
Bilo
BilS Row | A
' SRR
Bil4 Row 0
s T L Fo e
0512012 porT Bitd jee——Column 3|
Bio e Colun2 |
Bil] —Columnt |
Column 0

Bl

Row3 Row2 Rowl Row 0| Col3 Col2 Coll Col0
0 1 1 1 a b c d
1 0 1 1 e f g h
1 1 0 1 i j k |
1 1 1 1 m n o p

* Two steps to scan a particular row:
= select row by driving it low
» other rows stay HI-Z

= read the col to di vhich key is pr d
» 0> pressed in this case due to pull-up
* Works if

= no key is pressed
= 1 keoy is pressed
= 2 keys are pressed
» note general case would allow up to 4

mj School of Computing 27 CS 5780

University of Utah

mj School of Computing 28 CS 5780

University of Utah

4x4 Handler Code

const struct Row
{ unsigned char direction;
unsigned char keycode[4];}
typedef const struct Row RowType;
RowType ScanTab[5]={
{ 0x80, "abcd" }, // row 3
{ 0x40, "efgh" }, // row 2
{ 0x20, "ijkl1" }, // row 1
{ 0x10, "mnop" }, // row O
{ o0x00, " "3}
void Key_Init(void){
DDRT = 0x00; // PT3-PTO inputs

PTT = 0; // PT7T-PT4 oc output
PPST = 0; // pull-up on PT3-PTO
PERT = 0xOF;}

continued next slide

!BJ School of Computing

University of Utah 20 CS 5780

4x4 Code (cont’d)

/* Returns ASCII code for key pressed,
Num is the number of keys pressed
both equal zero if no key pressed */

unsigned char Key_Scan(short *Num){

RowType *pt; unsigned char column,key;
short j;
(*Num)=0; key=0;
pt=&ScanTab[0];
while(pt->direction){
DDRT = pt->direction; // ome output
column = PTT; // read columns
for(j=3; j>=0; j--){
if ((column&0x01)==0){
key = pt->keycodel[jl;
(*Num) ++;}
column>>=1;} // shift into position
pt++; }
return key;}

// default values

!DJ School of Computing

University of Utah 30

CS 5780

Concluding Remarks

* Controller sits In a sea of I’s and O’s
= might be a tight connection - e.g. keypad
» O’s say what we care about
» s say given what you care about this Is what happened
* Output compare tied to inputs are useful
= 6812 supports them
+ All switches are not created equal
= need to understand what you’re working with
» then you’ll know the debounce strategy
= fortunately the 6812 understands most of this inequality
» and p relatively sii & useful interface options
* Non-switch interfaces
= analog input values
» must convert to digital via AD port
= digital inputs - these are the simple ones

mj School of Computing 31 CS 5780

University of Utah

Page 8

