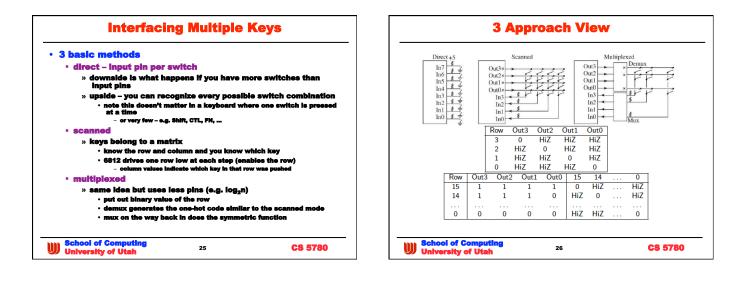
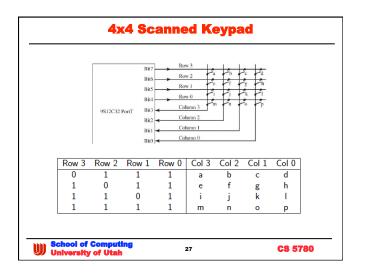
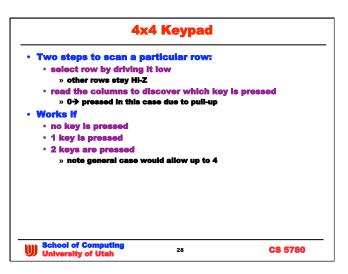

}{
PT3=0 when pressed
debouncing
id) {
// PT3=1 -> released
// debouncing
is input
ib input







Output Com	pare
<pre>void Key_Init(void) {</pre>	
TIOS $ = 0x20;$ // enable OC	5 (see Chapter 6)
TSCR1 = 0x80; // enable	
TSCR2 = 0x01; // 500 ns clo	ock
DDRT &=~0x08;} // PT3 is inp	ut
unsigned char Key_Read(void){	
unsigned char old;	
old = PTT&0x08; // Current	t value
TC5 = TCNT+20000; // 10ms de	elay
TFLG1 = 0x20; // Clear (C5F
while((TFLG1&0x20)==0){ // 10	ms
if(old!=(PTT&0x08)){ // ch	anged?
old = PTT&0x08; // New	w value
TC5 = TCNT+20000;}} // r	estart delay
return(old); }	
School of Computing 23	CS 5780

4x4 Handler Code

University of Utah 29	CS 5780
continued next slide	
<pre>PERT = OxOF;}</pre>	
PPST = 0; // pull-up on PT3-PT0)
PTT = 0; // PT7-PT4 oc output	
DDRT = 0x00; // PT3-PT0 inputs	
void Key_Init(void){	
{ 0x10, "mnop" }, // row 0 { 0x00, " " }};	
{ 0x20, "ijkl" }, // row 1 { 0x10, "mnop" }, // row 0	
{ 0x40, "efgh" }, // row 2	
{ 0x80, "abcd" }, // row 3	
RowType ScanTab[5]={	
typedef const struct Row RowType;	
unsigned char keycode[4];}	
{ unsigned char direction;	
const struct Row	

4x4 Code (cont'd)

<pre>/* Returns ASCII code for key pressed, Num is the number of keys pressed both equal zero if no key pressed */</pre>	
unsigned char Key_Scan(short *Num){	
RowType *pt; unsigned char column,key;	
short j;	
(*Num)=0; key=0; // default values pt=&ScanTab[0];	
while(pt->direction){	
DDRT = pt->direction; // one output	
column = PTT; // read columns	
for(j=3; j>=0; j){	
if((column&OxO1)==0){	
<pre>key = pt->keycode[j];</pre>	
(*Num)++;}	
<pre>column>>=1;} // shift into position pt++; }</pre>	
return key;}	
result noj j	
School of Computing University of Utah 30	CS 5780

Concluding Remarks		
Controller sits in a sea	of I's and O's	
 might be a tight connection 	ection – e.g. keyp	ad
» O's say what we can	e about	
» i's say given what yo	ou care about this i	s what happened
Output compare tied to	o <mark>inputs are us</mark> e	oful
 6812 supports them 		
All switches are not cr	eated equal	
 need to understand w 	hat you're workir	ng with
» then you'll know the	debounce strategy	1
 fortunately the 6812 u 	inderstands most	of this inequality
» and provides relative	ely simple & useful	interface options
Non-switch interfaces		
 analog input values 		
» must convert to digit	tai via AD port	
 digital inputs – these a 	are the simple on	88
School of Computing		CS 5780