CS/ECE 6780/5780

Al Davis

Today’s topics:
*‘Debouncing switches
*e.g. matrix keypad

*lab4 issues

School of Computing
!yj University of Utah 1

CS 5780

Basic Concepts

o Switches are often mechanical
* move something and
» contact is made or broken
* in either case
» metal rebounds
* causing “hash” oscillations in the observed signal
* source of massive ISR confusion if you're not careful
¢ Problem

* make multiple events look like one event
= usual solution
» hardware debounce
* extra logic
» software debounce
» focus for this weeks lab

¢ See “debouncing.pdf” on the class web site

* figures in the next few slides come from this document

» thanks to Jack Ganssle for an interesting read

School of Computing
)} University of Utah 2

CS 5780

Page 1

Switch Anatomy

e Lots of types
= SPST, SPDT, DPDT, and beyond

e How long does a switch bounce
= varies with switch type and often assymetric w/ open vs.

close
» typical a few ms but can be as bad as 100’s of ms

» also varies even for a single switch
¢ min to max can vary by 2x or so

¢ Ganssle’s findings (bounce times in usec)

{ @ Open
m Close

A B ¢
DF
GHIJKLMN
O P q
R

School of Computing
!yj University of Utah 3 CS 5780

Switches and TTL Sampling Levels

¢ Aliasing happens in the analog to digital transition

A1 2008/ £-80.0¢ 2,008/ Snal PatSTOR
¥

iz

i Lo

L1 = 2a.92ns 12 = -25.00m% BL = -50.000s 1,61 = 20.00 H2

Switch A at 2 msec/div. Note 8 msec of unsettled behavior before it finally decides to
open.
A1 20.0%/ r 0.00s 50.027 Fat RUN

........ .8 — 2v supposed to
be illegal for TTL

TTL no manis. Ié nd

Ay

t1 = 6.200ns 1& = 400.0ns _ &© = -B. 1780 = 161.0 e

ZCons
Switch C — 50 usec/div and 200 mV/div.

School of Computing
!DJ University of Utah 4 CS 5780

Page 2

Switch G

A1 Z00us C 0.00s 1.00%/ Fat RUN
: :) : ;
A : : : :
i i H
? 9 :
: il :
Voo i R EEEER R Vo i '
0 H . s
i : :
8l

3 8 5 Sl 5 8
t1 = 0.00C = tz = 2.160m= at = Z.130m= /&t = 450.7 Hz

Switch G. One super narrow pulse followed by 2 msec of nothingness. A sure-fire ISR
confuser.

!DJ School of Computing

University of Utah S CS 5780

Switch O

Al 2009/

t1 = 0.000 = . t2 = i.ochl 4t = l.OO;C)rn: .!./‘ét = 1000.0‘ Hz
Switch O, which zaps around enough to confiise dumb debouncers.

!DJ School of Computing 6 CS 5780

University of Utah

Page 3

Switch Q

AL =00 - BEEE 2008/ EEERUN
q T 3 3 ' 3 3

il L, el

t1 = J.?;Z’Om:, 2 = 6.0'33 : &4t = -1.32C0ms ;./ét =.F‘.:‘.G -H:
Switch O —when released, it goes high for 480 usec before generating 840 usec of hash,
a sure way to blow an interrupt system mad if poorly designed.

!DJ School of Computing

University of Utah 7 CS 5780

Bottom Line

¢ In general

= characterize the switches before you use them

» a thorough test takes a lot of time
* vary how you activate
* take scope traces
* use multiple versions of the same switch

= PCB mounted switches are often better than these
somewhat pathological examples

» but it is wise to check
= weird behavior or intermittent failure
» suspect your debounce method

!DJ School of Computing

University of Utah 8 CS 5780

Page 4

SR Latch HW Debouncer

To CPU

= Why does it work?
What switch property is required?

Downside?

!DJ School of Computing ° CS 5780

University of Utah

SR Software Equivalent

* Simplest possible code
= examine both inputs
» one will bounce the other won’t
» simple loop

if(switch_hi())state=ON;
if(switch lo())state=OFF;

» problems
¢ 2 input capture pins required
* SPDT switches are more costly and bulky
- rarely found on PCB’s these days

!DJ School of Computing 10 CS 5780

University of Utah

Page 5

RC Debouncer

e Simple
* but hides a lot of complexity

* need to characterize hash time to know desired RC time
constant

What'’s tricky here? R1

!DJ School of Computing " CS 5780

University of Utah

A Better RC Debouncer

* Why is this one better?

R1

b
o—/\/\/\,—<>_‘>07
R2

\U <C
[
at

!DJ School of Computing 12 CS 5780

University of Utah

Page 6

Schmitt Trigger Debounce
+5V 74HC14 =
Computer
10 kQ Vl ()Ulplll Inpu[
4 port
G
Touch Release
¢ Athout G Without C _
V'—I [With € +5V v, M 45V
+OV “With € +0V
_WithC . ~WithC -
Output |m _Without C :()V Output Without C| | :3\’
Apr— —
Sms Sms
School of Computing
W) University of Utah 3 ¢s 5780
2R Schmitt Debounce
74HC14
+5V
v Computer
10 kQ : o
utput
5 {>¢ Input port
zm%
p o
sl 5 Releage ASSUME NOIsy
:_ T4HC04 .: 74HC14 v, ﬂT’ ::)x
T h b
24 2 sV
) ft 1 74HC04 Output :ov
+ —F s 1 5V
I %8 %3 ViR T 7aRcia oupu | :ov
Similar slew decoupling issue but w/ hysteresis
School of Computing
)} University of Utah 1 Cs 5780

Page 7

Switch Interfaces

* HW debouncers make SW’s life easier
* but adds to cost
= so let’s consider a direct SPST interface w/ SW debounce
» 6812 style
+5V

10kQ lon Computer| |Switch|Output
— Output Toe 5V
. Input port pen :

Switch l lor Closed| 0V
+5V
|

Switch lon Computer| |Switch|Output
—— Output Onc oV
som— Input port pen
10kQ lor Closed| +5V
School of Computing
!yj University of Utah 15 CS 5780
6812 Ports

e Ports AD,J,M,P,Sand T
= support both internal pull-ups and pull-down resistors
» note to use port AD as a digital port
* corresponding bits In ATDDIEN must be set
= Port Pull Select Register must be set
» PPSAD, PPSJ, PPSP, PPSM, PPSS, PPST
¢ pull-up =0, pull-down=1
= Pull Enable Register
» PERAD, PERJ, PERP, PERM, PERS, PERT
¢ enables the pull-up or pull-down function
= Note
» first set PPSx then PERx

» if enable happens before select then get signals in possibly the
wrong polarity

School of Computing
!w University of Utah 16 CS 5780

Page 8

Port AD Initialization Example

+5V

Switch I
] 6812
PADI

PADO

Switch i__

void PortAD_Init(void){
ATDDIEN |= 0x03; // PAD1-0 digital I/O
DDRAD &= ~0x03; // PAD1-0 inputs

PPSAD |= 0x02; // pull-down on PAD1
PPSAD &= “0x01; // pull-up on PADO
PERAD |= 0x03; // enable pull-up and pull-down

School of Computing
!'JJ University of Utah 17 CS 5780

Software Debounce Model

e Assume bounce time <10ms

-— -—

10 ms 10 ms
Not])rcssc

Pressed

+5V
Microcomputer Touch Release
10 kQ \ \
6812 PT3/1C3 -K V N\ U U

!

School of Computing
!”J University of Utah 18 CS 5780

Page 9

Software Debounce w/ Gadfly Timer

void Key_WaitPress(void){
while (PTT&0x08); // PT3=0 when pressed
Timer_WaitiOms(1); // debouncing

}

void Key_WaitRelease(void){
while ((PTT&0x08)==0); // PT3=1 -> released
Timer_Wait10ms(1); // debouncing

}

void Key_Init(void){
Timer_Init();
DDRT &="0x08; // PT3 is input

}

School of Computing
!w University of Utah 19 CS 5780

SW Debounce Version 2

Read switch

Start timer

This version returns a new
value every time switch position

Old=switch changes
Unified press and release functions
Delay is over 4 B P
ms wal

Same <10ms hash assumption

Delay not over

Same

Old==switch

TR

Different

School of Computing
!”J University of Utah 20 CS 5780

Page 10

Timer Control & Output Compare

e Use
= create squarewaves, generate pulses, implement time
delays, generate periodic interrupts
e 6812 has 8 output compare modules
= Each module has
» external ouput pin (Ocn)
» flag bit, interrupt mask bit, and 16-bit output compare register
» force output compare bit (FOCn)
» two mode bits (OMn Oin)

Table 15-9. Compare Result Output Action

OMx OLx Action
0 0 Timer disconnected from output pin logic
0 1 Toggle OCx output line
1 0 Clear OCx output line to zero
1 1 Set OCx output line to one

MC9S12 reference manual

School of Computing
!yj University of Utah 2z CS 5780

Output Compare Process Example

¢ Basic steps
= read the current 16-bit TCNT
= calculate TCNT+delay
* set output compare register to TCNT+delay
= clear the output compare flag
= wait for the output compare flag to be set
o Essentially another SW debounce approach

School of Computing
!DJ University of Utah 22 CS 5780

Page 11

Output Compare

void Key_Init(void) {
TIOS |= 0x20; // enable 0C5 (see Chapter 6)
TSCR1 = 0x80; // enable
TSCR2 = 0x01; // 500 ns clock
DDRT &="0x08;} // PT3 is input
unsigned char Key_Read(void){
unsigned char old;

old = PTT&0x08; // Current value
TC5 = TCNT+20000; // 10ms delay
TFLG1 = 0x20; // Clear C5F

while ((TFLG1&0x20)==0){ // 10ms
if (01ld!=(PTT&0x08)){ // changed?
old = PTT&0x08; // New value
TC5 = TCNT+20000;}} // restart delay
return(old); }

School of Computing
!'JJ University of Utah 23 CS 5780

Debouncing Multiple Switches

#define MAX_CHECKS 10
uint8_t Debounced_State;
uint8_t State[MAX_CHECKS];
uint8_t Index;

void DebounceSwitches(void) {
uint8_t 1i,j;
State[Index] = ReadKeys();
Index++;
j = Oxff;
for(i=0;i<MAX_CHECKS-1;i++) {
j &= Statel[il;
}
Debounced_State "= j;
if (Index >= MAX_CHECKS) { Index = 0; }
}

~

Based on " My favorite software debouncers” by Jack Gannsle.

School of Computing
!”J University of Utah 24 CS 5780

Page 12

Interfacing Multiple Keys

* 3 basic methods
= direct — input pin per switch
» downside is what happens if you have more switches than
input pins
» upside - you can recognize every possible switch combination

¢ note this doesn’t matter in a keyboard where one switch is pressed
at a time

- or very few - e.g. Shift, CTL, FN, ...
= scanned
» keys belong to a matrix
* know the row and column and you know which key
* 6812 drives one row low at each step (enables the row)
- | | indicate which key in that row was pushed
* multiplexed
» same idea but uses less pins (e.g. log,n)
¢ put out binary value of the row
* demux generates the one-hot code similar to the scanned mode
¢ mux on the way back in does the symmetric function

School of Computing
University of Utah

V)

25 CS 5780

3 Approach View

Direct +5 Scanned Multiplexed
i 3 Demux
In7 3x Oul3 x
l:(,—g—f ((:::Zx . & Out2 o st
|n5__§_1 Outl ol ol il Outl o -
Ind -5 Outx A Outd . ‘
3 £ PR e 3 -
In2 f r:ga—z—r In2 3 r
Inl _§_2 Inl i Inl s
0¥ = nol<—% In0 L ox
Row Out3 Out2 Outl Out0
3 0 HiZ HiZ HiZ
2 HiZ 0 HiZ HiZ
1 HiZ HiZ 0 HiZ
0 HiZ HiZ HiZ 0
Row | Out3 Out2 Outl Out0| 15 14 0
15 1 1 1 1 0 HiZ HiZ
14 1 1 1 0 HiZ 0 HiZ
0 0 0 0 0 HiZ HizZ 0
School of Computing
W) University of Utah 26 CS 5780

Page 13

4x4 Scanned Keypad

Bit7 Row 3
i Row 2 1 b ¢
Bilb -
BitS Row | . T = ¢ h
Bitd Row 0 IR
T i3 Colurin 3 ymo¢n 0
9S12C32 PortT ~ Bil3 fe———220 2
Bil2 € Column 2
Bitl Column |
2 (
Bith Column 0

Row3 Row?2 Rowl Row 0| Col3 Col2 Coll ColO
0 1 1 1 a b c d
1 0 1 1 e f g h
1 1 0 1 i] k |
1 1 1 1 m n o p
School of Computing
!yj University of Utah 27 €S 5780
4x4 Keypad

¢ Two steps to scan a particular row:

= select row by driving it low
» other rows stay Hi-Z

= read the columns to discover which key is pressed
» 0> pressed in this case due to pull-up

* Works if
= no key is pressed
* 4 key is pressed
= 2 keys are pressed

» note general case would allow up to 4

!DJ School of Computing

University of Utah 28

CS 5780

Page 14

4x4 Handler Code

const struct Row
{ unsigned char direction;
unsigned char keycode[4];}
typedef const struct Row RowType;
RowType ScanTab[5]={
{ 0x80, "abcd" }, // row 3
{ 0x40, "efgh" }, // row 2
{ 0x20, "ijk1" }, // row 1
{ 0x10, "mnop" }, // row O
{ oO0xo00, " " 3}};
void Key_Init(void){
DDRT = 0x00; // PT3-PTO inputs

PTT = 0; // PT7-PT4 oc output
PPST = 0; // pull-up on PT3-PTO
PERT = OxOF;}

continued next slide

V)

School of Computing

University of Utah 29

CS 5780

4x4 Code (cont’d)

/* Returns ASCII code for key pressed,
Num is the number of keys pressed
both equal zero if no key pressed */

unsigned char Key_Scan(short *Num){

RowType *pt; unsigned char column,key;
short j;
(*Num)=0; key=0; // default values
pt=&ScanTab[0];
while(pt->direction){
DDRT = pt->direction; // one output
column = PTT; // read columns
for(j=3; j>=0; j-—){
if ((column&0x01)==0){
key = pt->keycodel[j];
CxNum) ++;}
column>>=1;} // shift into position
pt++; }
return key;}

)

School of Computing

University of Utah 30

CS 5780

Page 15

Concluding Remarks

Controller sits in a sea of I’s and O’s
= might be a tight connection - e.g. keypad
» O’s say what we care about
» I’s say given what you care about this is what happened
¢ Output compare tied to inputs are useful
* 6812 supports them
All switches are not created equal
* need to understand what you’re working with
» then you’ll know the debounce strategy
= fortunately the 6812 understands most of this inequality
» and provides relatively simple & useful interface options
* Non-switch interfaces
= analog input values
» must convert to digital via AD port
= digital inputs - these are the simple ones

School of Computing
!yj University of Utah 3 CS 5780

Page 16

