

Basic Concepts	
Switches are often mechanical	
 move something and 	
» contact is made or broken	
 in either case 	
» metal rebounds	
 causing "hash" oscillations in the observed signal 	
source of massive ISR confusion if you're not careful	
• Problem	
 make multiple events look like one event 	
 usual solution 	
» hardware debounce	
• extra logic	
 sortware debounce focus for this weeks lab 	
See "debouncing.pdf" on the class web site	
• figures in the next few slides come from this document	
» thanks to Jack Ganssle for an interesting read	
School of Computing University of Utah 2	CS 5780

Software Debounce w/ Gadfly Timer void Key_WaitPress(void){ while(PTT&0x08); // PT3=0 when pressed Timer_Wait10ms(1); // debouncing } void Key_WaitRelease(void){ while((PTT&0x08)==0); // PT3=1 -> released Timer_Wait10ms(1); // debouncing } void Key_Init(void){ Timer_Init(); DDRT &=~0x08; // PT3 is input } **School of Computing** UJ 19 **CS 5780 University of Utah**

