CS/ECE 5780/6780 Lab #9
Spring 2010
Davis, Atcitty, Lee

LAB #9: Stepper Motors

The Lab write-up is due to your TA at the beginning of your next scheduled lab. Don’t put
this off to the last minute! There is pre-lab work to complete before the start of the next lab.
NO LATE LAB REPORTS WILL BE ACCEPTED.

1 Objectives

 Gain experience with stepper motor control.

e Demonstrate a practical application of the 6812 timer system.

2 Reading

e Read Section 8.6 on stepper motors.

3 Background

In this lab, you will be designing an interface to a stepper motor. The stepper motor
kit is available in the lab for checkout, but you should not need to check it out until you are
ready to demonstrate your program. The stepper motor kit can not leave the lab. To control
the stepper motor, you will need to generate the corrector output at the specified period as
specified by commands input from your keypad. To do this, it is suggested that you use
output compare 7 (0C7) although you may use any method you like.

Your program supports six commands. Note that ‘n’ is any digit 0-9.

1. 1*nnnnn# - set the period in us for full steps or half-steps.

2*nnnnn# - set number of steps to complete before stopping. 0 steps indicates
that the motor should run continuously.

3* - forward or clockwise mode.

4* - backward or counter-clockwise mode.

5% - full-step iterations.

6* - half-step iterations.

N

o U1k W

For example, to set the period to 100 us I would enter ‘1*100#’. You can select
reasonable defaults for the mode of operation. The defaults should be clearly specified as a
comment in your code.

If you are using OC7, you can tie OC7 to other port T pins (PT7 though PT3) using
the OC7M control register. All solutions will control the stepper motor using PT7 through
PT4. To control the stepper motor, you should output the following patterns in sequence to
create half-steps.

* %1010

* %1000



* %1001
* %0001
* %0101
* %0100
* %0110
* %0010

To move forward in half-steps, you will cycle through these patterns in the order

shown. To move backward, you will cycle through these patterns in the reverse order. To
move in full-steps, you will output every other pattern. PT3 or the LCD should be used to
produce a “heartbeat” to show your device is working. The “heartbeat” is a periodically
changing signal which could be as simple as blinking an LED.

4 Pre-lab

1.

Write C code. If you choose to use OC7 the pseudocode for this handler is below:

TC7 += step_period
if (step_count == 0)
0C7D=0
else
choose next step pattern index i (for half or full, fwd or backward)
update OC7D with next pattern
step_count--

5 Tasks

1.

Add LEDs with resistors to pins PT7 through PT4 and PT3 if you are using it for the
“heartbeat” signal.

Test each of the six commands, and verify that your code produces the patterns
expected on the LEDs.

Capture the patterns that you see on the oscilloscope and include these plots in your
writeup.

After you demonstrate your stepper motor controller to your TA, check out a
stepper motor kit and a DB25 connector. Plug the DB25 connector into the stepper
motor kit and connect pins 2-5 to PT7, 6, 5, 4 (respectively) of your 6812 circuit. You
can leave the LEDs in place to verify operation. Connect one of the DB25 ground
pins (11, 12, or 25) to the ground rail of your circuit. Hook up 12V across the +12V
and GND terminals of the stepper motor kit. Specify a long period (65536) and
verify that the 12V (24 step) motor steps appropriately each time a new pattern is
driven on PT4-7.

Demonstrate all six commands to your TA. Demonstrate clockwise and
counterclockwise rotations of precisely 90 degrees. Experiment with the motor
control in order to answer the writeup questions.



6. Remove the 12V power and connect pins 6-9 of the DB25 connector to PT7,6,5,4 of
your 6812 circuit. Supply 9V across the +9V and GND terminals of the stepper motor
kit. Specify a long period and verify that the 9V (400 step) motor steps
appropriately each time a new pattern is driven on PT4-7. (It may be difficult to see
the individual steps.)

7. Demonstrate the six commands to your TA. Demonstrate clockwise and
counterclockwise rotations of precisely 90 degrees. Experiment with the motor
control in order to answer the writeup questions. With the motor turning at its
fastest speed, try to stop the motor by hand.

8. Modify your circuit in order to drive the motor with a constant pattern %1000. Try
to turn the motor by hand.

6 Writeup

1. Include a printout of your final program and your capture file.
2. Describe any problems you encountered.
3. Answer the following questions.

(a) What is the fastest update frequency each of the motors could support without
dropping steps?

(b) How does the motor behave when driven faster than it can handle?

(c) Can the motors support faster half-step update rates than full-step rates? If so,
why would this be the case?

(d) When driving the motors at their highest speeds, do you notice any effects of
inertia when switching the direction of rotation?

(e) What is the effect of reversing the order of the stepper motor control pins (i.e.,
swapping PT7 with PT4, and PT6 with PT5)? You can answer this by
experiment, or by analyzing the stepper patterns.

(f) Isitharder to stop the 9V stepper motor when it’s turning, or to turn it when it’s
holding its position? Suggest a reason why this would be the case.



