
1

Shadow Volumes

Shadow Volume History (1)

• Invented by Frank Crow [’77]
– Software rendering scan-line approach

• Brotman and Badler [’84]
– Software-based depth-buffered approach

– Used lots of point lights to simulate soft shadows

• Pixel-Planes [Fuchs, et.al. ’85] hardware
– First hardware approach

– Point within a volume, rather than ray intersection

• Bergeron [’96] generalizations
– Explains how to handle open models

– And non-planar polygons

Shadow Volume History (2)

• Fournier & Fussell [’88] theory
– Provides theory for shadow volume counting approach within a

frame buffer

• Akeley & Foran invent the stencil buffer
– IRIS GL functionality, later made part of OpenGL 1.0

– Patent filed in ’92

• Heidmann [IRIS Universe article, ’91]
– IRIS GL stencil buffer-based approach

• Deifenbach’s thesis [’96]
– Used stenciled volumes in multi-pass framework

Shadow Volume History (3)

• Dietrich slides [March ’99] at GDC
– Proposes zfail based stenciled shadow volumes

• Kilgard whitepaper [March ’99] at GDC
– Invert approach for planar cut-outs

• Bilodeau slides [May ’99] at Creative seminar
– Proposes way around near plane clipping problems

– Reverses depth test function to reverse stencil volume ray
intersection sense

• Carmack [unpublished, early 2000]
– First detailed discussion of the equivalence of

zpass and zfail stenciled shadow
volume methods

Shadow Volume History (4)

• Kilgard [2001] at GDC and CEDEC Japan
– Proposes zpass capping scheme

• Project back-facing (w.r.t. light) geometry to the near clip plane
for capping

• Establishes near plane ledge for crack-free
near plane capping

– Applies homogeneous coordinates (w=0) for rendering infinite
shadow volume geometry

– Requires much CPU effort for capping

– Not totally robust because CPU and GPU computations will
not match exactly,
resulting in cracks

Shadow Volume Basics

Shadowing
object

Light
source Shadow

volume

(infinite extent)

A shadow volume is
simply the half-space defined
by a light source and a shadowing object.

2

Shadow Volume Basics (2)

Partially
shadowed
object

Surface inside
shadow volume

(shadowed)

Surface outside
shadow volume

(illuminated)

Simple rule:
samples within a
shadow volume
are in shadow.

Shadow Quality: Shadow Maps

Shadow Quality: Stencil Shadow Volumes

Shadow Volumes

• Draw polygons along boundary of region in
shadow (occluders)

• Along ray from eye to first visible surface:
– Count up for in event

– Count down for out events

– If result zero when surface hit, is lit

• Can be implemented with stencil buffer

• Near/far plane clip causes problems

Shadow Volume Advantages

• Omni-directional approach
– Not just spotlight frustums as with shadow maps

• Automatic self-shadowing
– Everything can shadow everything, including self

– Without shadow acne artifacts as with shadow maps

• Window-space shadow determination
– Shadows accurate to a pixel

– Or sub-pixel if multisampling is available

• Required stencil buffer broadly supported today
– OpenGL support since version 1.0 (1991)

– Direct3D support since DX6 (1998)

Point Inside 2D Polygon

3

Point Inside 2D Polygon Point Inside 2D Polygon

Point Inside 2D Polygon Point Inside 2D Polygon

• Infinite “polygon”

• Union of polygons

• Line segment

Optimizing shadow volumes

• Use silhouette edges only

L

A

Shadow volumes [Crow77]

• Shadow volumes define closed volumes of
space that are in shadow

infinitesimal
light source

shadow caster
= light cap

extruded
side quads

dark cap

4

Shadow Volumes [Crow 77]

Step 1: Render scene Z-values

Shadow Volumes [Crow 77]

Front face: +1

Step 2: Render shadow volume faces

Back face: -1

Shadow Volumes [Crow 77]

Front face: ±0 (Depth test)
Back face: ±0 (Depth test)

 = ±0

Shadow Volumes [Crow 77]

Front face: +1
Back face: ±0 (Depth test)

 = +1

±0

Shadow Volumes [Crow 77]

Front face: +1
Back face: -1

 = ±0

±0
+1

Shadow Volumes [Crow 77]

±0
+1

±0

Step 3: Apply shadow mask to scene

5

Shadow Volumes w/ Stencils (Zpass)

• Details of the basic algorithm:
– Compute shadow volumes

• View-independent!
– Clear stencil buffer
– Render the scene without (diffuse) specular lighting (ambient only)

• Sets the Depth Buffer and color buffer
– “Render” front faces of shadow volumes

• Turn off color, depth updates (but leave depth test on)
• Visible polygons increment pixel stencil buffer count
• increment when depth test passes

– “Render” back faces of shadow volumes
• Turn off color, depth updates (but leave depth test on)
• Visible polygons decrement pixel stencil buffer count
• decrement when depth test passes

– Render scene with only diffuse/spec lighting
• Only update pixels where stencil = 0
• Others are in shadow (ambient only)!

Illuminated,
Behind Shadow Volumes (Zpass)

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Illuminated,
Behind Shadow Volumes (Zpass)

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Unshadowed
object

+ ---+ +

Shadow Volume Count = +1+1+1-1-1-1 = 0

Shadowed, Nested in Shadow
Volumes (Zpass)

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Shadowed
object

+ -+ +

Shadow Volume Count = +1+1+1-1 = 2

Illuminated, In Front of Shadow
Volumes (Zpass)

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Unshadowed
object

Shadow Volume Count = 0 (no depth tests pass)

Problems Created by
Near Clip Plane (Zpass)

zero

zero

+1
+1

+2

+2

+3

Near clip
plane

Far clip
plane

Missed shadow volume
intersection due to near
clip plane clipping; leads
to mistaken count

6

Shadow Volumes (Zfail)

• Details of the basic algorithm:
– Compute shadow volumes

• View-independent!
– Clear stencil buffer
– Render the scene without diffuse/spec lighting

• Sets the Depth Buffer and Color Buffer
– “Render” back faces of shadow volumes

• Turn off color, depth updates (but leave depth test on)
• Visible polygons increment pixel stencil buffer count
• increment when depth test fails

– “Render” front faces of shadow volumes
• Turn off color, depth updates (but leave depth test on)
• Visible polygons decrement pixel stencil buffer count
• decrement when depth test fails

– Render scene with only diffuse/spec lighting
• Only update pixels where stencil = 0
• Others are in shadow (ambient only)!

Zfail versus Zpass Comparison

• When stencil increment/decrements occur
– Zpass: on depth test pass

– Zfail: on depth test fail

• Increment on
– Zpass: front faces

– Zfail: back faces

• Decrement on
– Zpass: back faces

– Zfail: front faces

Illuminated,
Behind Shadow Volumes (Zfail)

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Unshadowed
object

Shadow Volume Count = 0 (zero depth tests fail)

Shadowed, Nested in
Shadow Volumes (Zfail)

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Shadow Volume Count = +1+1 = 2

+ +

Shadowed
object

Illuminated, In Front of Shadow
Volumes (Zfail)

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Unshadowed
object

Shadow Volume Count = -1-1-1+1+1+1 = 0

- +- - + +

Zfail versus Zpass Comparison

• Both cases order passes based stencil operation
– First, render increment pass

– Second, render decrement pass

– Why?
 Because standard stencil operations saturate

 Wrapping stencil operations can avoid this

• Which clip plane creates a problem
– Zpass: near clip plane

– Zfail: far clip plane

• Either way is foiled by view frustum clipping
– Which clip plane (front or back) changes

7

Nested Shadow Volumes
Stencil Counts Beyond One

Shadowed scene Stencil buffer contents

green = stencil value of 0
red = stencil value of 1
darker reds = stencil value > 1

Amount of pixel processing

Adapted from [Chan and Durand 2004]

Shadows in a Real Game Scene

Abducted game
images courtesy
Joe Riedel at
Contraband
Entertainment

Scene’s Visible
Geometric Complexity

Primary light
source location

Wireframe shows
geometric
complexity of
visible geometry

Blow-up of Shadow Detail

Notice cable
shadows on
player model

Notice player’s
own shadow on
floor

Scene’s Shadow Volume
Geometric Complexity

Wireframe shows
geometric
complexity of
shadow volume
geometry

Shadow volume
geometry projects
away from the
light source

8

Visible Geometry vs.
Shadow Volume Geometry

<<

Visible geometry Shadow volume geometry

Typically, shadow volumes generate
considerably more pixel updates than
visible geometry

Other Example Scenes (1 of 2)

Visible geometry

Shadow volume
geometry

Dramatic chase scene with shadows

Abducted game images courtesy
Joe Riedel at Contraband Entertainment

Other Example Scenes (2 of 2)

Visible geometry

Shadow volume
geometry

Scene with multiple light sources

Abducted game images courtesy
Joe Riedel at Contraband Entertainment

Shadow Volumes Too Expensive

Chain-link fence’s
shadow appears on
truck & ground with
shadow maps

Chain-link fence is
shadow volume
nightmare!

Fuel game image courtesy Nathan d’Obrenan at Firetoad Software

Shadow Volume Advantages

• Omni-directional approach
– Not just spotlight frustums as with shadow maps

• Automatic self-shadowing
– Everything can shadow everything, including self

– Without shadow acne artifacts as with shadow maps

• Window-space shadow determination
– Shadows accurate to a pixel

– Or sub-pixel if multisampling is available

• Required stencil buffer broadly supported today
– OpenGL support since version 1.0 (1991)

– Direct3D support since DX6 (1998)

Shadow Volume Disadvantages

• Ideal light sources only
– Limited to local point and directional lights
– No area light sources for soft shadows

• Requires polygonal models with connectivity
– Models must be closed (2-manifold)
– Models must be free of non-planar polygons

• Silhouette computations are required
– Can burden CPU
– Particularly for dynamic scenes

• Inherently multi-pass algorithm
• Consumes lots of GPU fill rate

9

Shadows: Volumes vs. Maps

• Shadow mapping via projective texturing
– The other prominent hardware-accelerated shadow technique

– Standard part of OpenGL 1.4

• Shadow mapping advantages
– Requires no explicit knowledge of object geometry

– No 2-manifold requirements, etc.

– View independent

• Shadow mapping disadvantages
– Sampling artifacts

– Not omni-directional

Issues with Shadow Volumes

FF

BF

Stencil Shadow Pros

• Very accurate and robust

• Nearly artifact-free
– Faceting near the silhouette edges

is the only problem

• Work for point lights and directional lights
equally well

• Low memory usage

Stencil Shadow Cons

• Too accurate — hard edges
– Need a way to soften

• Very fill-intensive
– Scissor and depth bounds test help

• Significant CPU work required
– Silhouette determination

– Building shadow volumes

Stenciled Shadow Volume
Optimizations (1)

• Use GL_QUAD_STRIP rather than GL_QUADS to
render extruded shadow volume quads
– Requires determining possible silhouette loop connectivity

• Mix Zfail and Zpass techniques
– Pick a single formulation for each shadow volume

– Zpass is more efficient since shadow volume does not need to
be closed

– Mixing has no effect on net shadow depth count

– Zfail can be used in the hard cases

Stenciled Shadow Volume
Optimizations (2)

• Pre-compute or re-use cache shadow volume
geometry when geometric relationship between a light
and occluder does not change between frames
– Example: Headlights on a car have a static shadow volume

w.r.t. the car itself as an occluder

• Advanced shadow volume culling approaches
– Uses portals, Binary Space Partitioning trees, occlusion

detection, and view frustum culling techniques to limit shadow
volumes

– Careful to make sure such optimizations
are truly correct

10

Stenciled Shadow Volume
Optimizations (3)

• Take advantage of ad-hoc knowledge of scenes
whenever possible
– Example: A totally closed room means you do not have to

cast shadow volumes for the wall, floor, ceiling

• Limit shadows to important entities
– Example: Generate shadow volumes for monsters and

characters, but not static objects

– Characters can still cast shadows on static objects

• Mix shadow techniques where possible
– Use planar projected shadows or

light-maps where appropriate

Stenciled Shadow Volume
Optimizations (4)

• Shadow volume’s extrusion for directional lights can be
rendered with a GL_TRIANGLE_FAN
– Directional light’s shadow volume always projects to a single

point at infinity

Scene with
directional light.

Clip-space view of
shadow volume

Hardware Enhancements:
Wrapping Stencil Operations

• Conventional OpenGL 1.0 stencil operations
– GL_INCR increments and clamps to 2N-1

– GL_DECR decrements and clamps to zero

• DirectX 6 introduced “wrapping” stencil operations

• Exposed by OpenGL’s stencil wrap
– GL_INCR_WRAP increments modulo 2N

– GL_DECR_WRAP decrements modulo 2N

• Avoids saturation throwing off the shadow
volume depth count
– Still possible, though very rare, that 2N,

22N, 32N, etc. can alias to zero

Hardware Enhancements:
Two-sided Stencil Testing (1)

• Past stenciled shadow volumes required rendering
shadow volume geometry twice
– First, rasterizing front-facing geometry

– Second, rasterizing back-facing geometry

• Two-sided stencil testing requires only one pass
– Two sets of stencil state: front- and back-facing

– Boolean enable for two-sided stencil testing

– When enabled, back-facing stencil state is used for stencil
testing back-facing polygons

– Otherwise, front-facing stencil state is used

– Rasterizes just as many fragments,
but more efficient for CPU & GPU

Hardware Enhancements:
Two-sided Stencil Testing (2)

glStencilMaskSeparate and
glStencilOpSeparate (face, fail, zfail, zpass)
glStencilFuncSeparate (face, func, ref, mask)

– Control of front- and back-facing stencil state
update

Performance

• Have to render lots of huge polygons
– Front face increment
– Back face decrement
– Possible capping pass

• Burns fill rate like crazy
• Turn off depth and color write, though
• Gives accurate shadows

– IF implemented correctly
– When fails, REALLY fails

• Need access to geometry if want to use silhouette
optimization

11

Slide Credits

• Cass Everitt & Mark Kilgard, NVidia
– GDC 2003 presentation

• Timo Aila, Helsinki U. Technology

• Jeff Russell

• David Luebke, University of Virginia

• Michael McCool, University of Waterloo

• Eric Lengyel, Naughty Dog Games

These are extra slides

• Hacks to further improve shadow volumes

Scissor Optimizations

• Most important fill-rate optimization for
stencil shadows

• Even more important for penumbral wedge
shadows

• Hardware does not generate fragments
outside the scissor rectangle — very fast

Scissor Optimizations

• Scissor rectangle can be applied
on a per-light basis or even a
per-geometry basis

• Requires that lights have a finite volume of
influence
– What type of light is this?

Light Scissor

Camera

Light

Image Plane

View Frustum

12

Light Scissor

• Project light volume onto the image plane

• Intersect extents with the viewport to get
light’s scissor rectangle

• Mathematical details at:
– http://www.gamasutra.com/features/

20021011/lengyel_01.htm

No Light Scissor

Shadow volumes extend
to edges of viewport

Light Scissor

Shadow volume fill
reduced significantly

Depth Bounds Test

Camera

Light

View Frustum

Max Depth

Min Depth

Depth Bounds Test

• Like a z scissor, but...

• Operates on values already in the depth
buffer, not the depth of the incoming
fragment

• Saves writes to the stencil buffer when
shadow-receiving geometry is out of range

Depth Bounds Test

Camera

Max Depth

Min Depth

Rejected
Fragments

Shadow
Volume

Shadow
Receiver

No Depth Bounds Test

Shadow volumes extend
closer to and further
from camera than
necessary

Depth Bounds Test

Shadow volume fill
outside depth bounds
is removed

13

No Depth Bounds Test

A lot of extra shadow
volume fill where we
know it can’t have any
effect

Depth Bounds Test

Parts that can’t
possibly intersect the
environment removed

Depth Bounds Test

• Depths bounds specified in viewport
coordinates

• To get these from camera space, we need
to apply projection matrix and viewport
transformation

• Apply to points (0,0,z,1)

Depth Bounds Test

• Let P be the projection matrix and let [dmin,
dmax] be the depth range

• Viewport depth d corresponding to camera
space z is given by

max min 33 34 max min

43 442 2

d d P z P d d
d

P z P

Geometry Scissor

• We can do much better than a single
scissor rectangle per light

• Calculate a scissor rectangle for each
geometry casting a shadow

Geometry Scissor

• Define a bounding box for the light
– Doesn’t need to contain the entire sphere of

influence, just all geometry that can receive
shadows

– For indoor scenes, the bounding box is
usually determined by the locations of walls

Geometry Scissor

Bounding
Box

Light
Sphere

14

Geometry Scissor

• For each geometry, define a simple
bounding polyhedron for its shadow
volume
– Construct a pyramid with its apex at the light’s

position and its base far enough away to be
outside the light’s sphere of influence

– Want pyramid to be as tight as possible
around geometry

Geometry Scissor

Light’s
Bounding

Box

Light
Sphere

Shadow
Volume

Bounding
Polyhedron

Geometry Scissor

• Clip shadow volume’s bounding
polyhedron to light’s bounding box

• Project vertices of resulting polyhedron
onto image plane

• This produces the boundary of a much
smaller scissor rectangle

• Also gives us a much smaller depth
bounds range

Geometry Scissor

Light’s
Bounding

Box

Light
Sphere

Clipped
Bounding

Polyhedron

Camera

Geometry Scissor

Scissor Rectangle

Depth
Bounds

Image Plane

Geometry Scissor

Camera

Scissor

Depth
Bounds

Image Plane

15

No Geometry Scissor

Light scissor rectangle
and depth bounds test
are no help at all in
this case

Geometry Scissor

Shadow volume fill
drastically reduced

Scissor and Depth Bounds

• Performance increase for ordinary stencil
shadows not spectacular

• Real-world scenes get about 5-8% faster
using per-geometry scissor and depth
bounds test

• Hardware is doing very little work per
fragment, so reducing number of
fragments is not a huge win

Scissor and Depth Bounds

• For penumbral wedge rendering, it’s a
different story

• We will do much more work per fragment,
so eliminating a lot of fragments really
helps

• Real-world scenes can get 40-45% faster
using per-geometry scissor and depth
bounds test

