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Shadow Volumes

Why Shadow Volumes?

• Dynamic shadows improve your game
– Dramatic effects

– Better sense of 3D

• Most game shadows today are very limited
– Planar projected shadows [Blinn ’88]

– Limited to floor planes, perhaps walls

Not good enough
for today’s games!
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Shadow Volume History (1)

• Invented by Frank Crow [’77]
– Software rendering scan-line approach

• Brotman and Badler [’84] 
– Software-based depth-buffered approach

– Used lots of point lights to simulate soft shadows

• Pixel-Planes [Fuchs, et.al. ’85] hardware
– First hardware approach

– Point within a volume, rather than ray intersection

• Bergeron [’96] generalizations
– Explains how to handle open models

– And non-planar polygons

Shadow Volume History (2)

• Fournier & Fussell [’88] theory
– Provides theory for shadow volume counting approach within a 

frame buffer

• Akeley & Foran invent the stencil buffer
– IRIS GL functionality, later made part of OpenGL 1.0

– Patent filed in ’92

• Heidmann [IRIS Universe article, ’91]
– IRIS GL stencil buffer-based approach

• Deifenbach’s thesis [’96]
– Used stenciled volumes in multi-pass framework
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Shadow Volume History (3)

• Dietrich slides [March ’99] at GDC
– Proposes zfail based stenciled shadow volumes

• Kilgard whitepaper [March ’99] at GDC
– Invert approach for planar cut-outs

• Bilodeau slides [May ’99] at Creative seminar
– Proposes way around near plane clipping problems

– Reverses depth test function to reverse stencil volume ray 
intersection sense

• Carmack [unpublished, early 2000]
– First detailed discussion of the equivalence of

zpass and zfail stenciled shadow
volume methods

Shadow Volume History (4)

• Kilgard [2001] at GDC and CEDEC Japan
– Proposes zpass capping scheme

• Project back-facing (w.r.t. light) geometry to the near clip plane 
for capping

• Establishes near plane ledge for crack-free
near plane capping

– Applies homogeneous coordinates (w=0) for rendering infinite 
shadow volume geometry

– Requires much CPU effort for capping

– Not totally robust because CPU and GPU computations will 
not match exactly,
resulting in cracks
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Shadow Volume Basics

Shadowing
object

Light
source Shadow

volume

(infinite extent) 

A shadow volume is
simply the half-space defined
by a light source and a shadowing object.

Shadow Volume Basics (2)

Partially
shadowed 
object

Surface inside
shadow volume

(shadowed)

Surface outside
shadow volume

(illuminated) 

Simple rule:
samples within a
shadow volume
are in shadow.
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Shadow Quality: “Blobs”

Shadow Quality: Shadow Maps
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Shadow Quality: Stencil Shadow Volumes

Shadow Volumes

• Draw polygons along boundary of region in 
shadow (occluders)

• Along ray from eye to first visible surface:
– Count up for in event

– Count down for out events

– If result zero when surface hit, is lit

• Can be implemented with stencil buffer

• Near/far plane clip causes problems
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Shadow Volume Advantages

• Omni-directional approach
– Not just spotlight frustums as with shadow maps

• Automatic self-shadowing
– Everything can shadow everything, including self

– Without shadow acne artifacts as with shadow maps

• Window-space shadow determination
– Shadows accurate to a pixel

– Or sub-pixel if multisampling is available

• Required stencil buffer broadly supported today
– OpenGL support since version 1.0 (1991)

– Direct3D support since DX6 (1998)

Point Inside 2D Polygon
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Point Inside 2D Polygon

Point Inside 2D Polygon
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Point Inside 2D Polygon

Point Inside 2D Polygon

• Infinite “polygon”

• Union of polygons

• Line segment
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Optimizing shadow volumes

• Use silhouette edges only

L

A

Shadow volumes [Crow77]

• Shadow volumes define closed volumes of 
space that are in shadow

infinitesimal
light source

shadow caster 
= light cap

extruded
side quads

dark cap
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Shadow Volumes [Crow 77]

Step 1: Render scene  Z-values

Shadow Volumes [Crow 77]

Front face: +1

Step 2: Render shadow volume faces

Back face: -1
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Shadow Volumes [Crow 77]

Front face: ±0 (Depth test)
Back face: ±0 (Depth test)

 = ±0

Shadow Volumes [Crow 77]

Front face: +1
Back face: ±0 (Depth test)

 = +1

±0
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Shadow Volumes [Crow 77]

Front face: +1
Back face: -1

 = ±0 

±0
+1

Shadow Volumes [Crow 77]

±0
+1

±0

Step 3: Apply shadow mask to scene



14

Shadow Volumes w/ Stencils (Zpass)

• Details of the basic algorithm:
– Compute shadow volumes

• View-independent!
– Clear stencil buffer
– Render the scene without (diffuse) specular lighting (ambient only)

• Sets the Depth Buffer and color buffer
– “Render” front faces of shadow volumes

• Turn off color, depth updates (but leave depth test on)
• Visible polygons increment pixel stencil buffer count
• increment when depth test passes

– “Render” back faces of shadow volumes
• Turn off color, depth updates (but leave depth test on)
• Visible polygons decrement pixel stencil buffer count
• decrement when depth test passes

– Render scene with only diffuse/spec lighting
• Only update pixels where stencil = 0
• Others are in shadow (ambient only)!

Illuminated,
Behind Shadow Volumes (Zpass)

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3
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Illuminated,
Behind Shadow Volumes (Zpass)

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3

Unshadowed
object

+ ---+ +

Shadow Volume Count = +1+1+1-1-1-1 = 0

Shadowed, Nested in Shadow 
Volumes (Zpass)

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3

Shadowed
object

+ -+ +

Shadow Volume Count = +1+1+1-1 = 2
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Illuminated, In Front of Shadow 
Volumes (Zpass)

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3

Unshadowed
object

Shadow Volume Count = 0 (no depth tests pass)

Problems Created by
Near Clip Plane (Zpass)

zero

zero

+1
+1

+2

+2

+3

Near clip
plane 

Far clip
plane 

Missed shadow volume 
intersection due to near 
clip plane clipping; leads 
to mistaken count
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Shadow Volumes (Zfail)

• Details of the basic algorithm:
– Compute shadow volumes

• View-independent!
– Clear stencil buffer
– Render the scene without diffuse/spec lighting

• Sets the Depth Buffer and Color Buffer
– “Render” back faces of shadow volumes

• Turn off color, depth updates (but leave depth test on)
• Visible polygons increment pixel stencil buffer count
• increment when depth test fails

– “Render” front faces of shadow volumes
• Turn off color, depth updates (but leave depth test on)
• Visible polygons decrement pixel stencil buffer count
• decrement when depth test fails

– Render scene with only diffuse/spec lighting
• Only update pixels where stencil = 0
• Others are in shadow (ambient only)!

Zfail versus Zpass Comparison

• When stencil increment/decrements occur
– Zpass: on depth test pass

– Zfail: on depth test fail

• Increment on
– Zpass: front faces

– Zfail: back faces

• Decrement on
– Zpass: back faces

– Zfail: front faces
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Illuminated,
Behind Shadow Volumes (Zfail)

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3

Unshadowed
object

Shadow Volume Count = 0 (zero depth tests fail)

Shadowed, Nested in
Shadow Volumes (Zfail)

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3

Shadow Volume Count = +1+1 = 2

+ +

Shadowed
object
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Illuminated, In Front of Shadow 
Volumes (Zfail)

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3

Unshadowed
object

Shadow Volume Count = -1-1-1+1+1+1 = 0

- +- - + +

Zfail versus Zpass Comparison

• Both cases order passes based stencil operation
– First, render increment pass

– Second, render decrement pass

– Why?
 Because standard stencil operations saturate

 Wrapping stencil operations can avoid this

• Which clip plane creates a problem
– Zpass: near clip plane 

– Zfail: far clip plane

• Either way is foiled by view frustum clipping
– Which clip plane (front or back) changes
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Nested Shadow Volumes
Stencil Counts Beyond One

Shadowed scene Stencil buffer contents

green  = stencil value of 0
red = stencil value of 1
darker reds = stencil value > 1

Amount of pixel processing

Adapted from [Chan and Durand 2004]
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Shadows in a Real Game Scene

Abducted game 
images courtesy
Joe Riedel at 
Contraband 
Entertainment

Scene’s Visible
Geometric Complexity

Primary light 
source location

Wireframe shows 
geometric 
complexity of 
visible geometry
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Blow-up of Shadow Detail

Notice cable 
shadows on 
player model

Notice player’s 
own shadow on 
floor

Scene’s Shadow Volume
Geometric Complexity

Wireframe shows 
geometric 
complexity of 
shadow volume 
geometry

Shadow volume 
geometry projects 
away from the 
light source
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Visible Geometry vs.
Shadow Volume Geometry

<<

Visible geometry Shadow volume geometry

Typically, shadow volumes generate 
considerably more pixel updates than 
visible geometry

Other Example Scenes (1 of 2)

Visible geometry

Shadow volume 
geometry

Dramatic chase scene with shadows

Abducted game images courtesy
Joe Riedel at Contraband Entertainment
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Other Example Scenes (2 of 2)

Visible geometry

Shadow volume 
geometry

Scene with multiple light sources

Abducted game images courtesy
Joe Riedel at Contraband Entertainment

Shadow Volumes Too Expensive

Chain-link fence’s 
shadow appears on 
truck & ground with 
shadow maps

Chain-link fence is 
shadow volume 
nightmare!

Fuel game image courtesy Nathan d’Obrenan at Firetoad Software
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Shadow Volume Advantages

• Omni-directional approach
– Not just spotlight frustums as with shadow maps

• Automatic self-shadowing
– Everything can shadow everything, including self

– Without shadow acne artifacts as with shadow maps

• Window-space shadow determination
– Shadows accurate to a pixel

– Or sub-pixel if multisampling is available

• Required stencil buffer broadly supported today
– OpenGL support since version 1.0 (1991)

– Direct3D support since DX6 (1998)

Shadow Volume Disadvantages

• Ideal light sources only
– Limited to local point and directional lights
– No area light sources for soft shadows

• Requires polygonal models with connectivity
– Models must be closed (2-manifold)
– Models must be free of non-planar polygons

• Silhouette computations are required
– Can burden CPU
– Particularly for dynamic scenes

• Inherently multi-pass algorithm
• Consumes lots of GPU fill rate
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Shadows: Volumes vs. Maps

• Shadow mapping via projective texturing
– The other prominent hardware-accelerated shadow technique

– Standard part of OpenGL 1.4

• Shadow mapping advantages
– Requires no explicit knowledge of object geometry

– No 2-manifold requirements, etc.

– View independent

• Shadow mapping disadvantages
– Sampling artifacts

– Not omni-directional

Issues with Shadow Volumes

FF

BF
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Stencil Shadow Pros

• Very accurate and robust

• Nearly artifact-free
– Faceting near the silhouette edges

is the only problem

• Work for point lights and directional lights 
equally well

• Low memory usage

Stencil Shadow Cons

• Too accurate — hard edges
– Need a way to soften

• Very fill-intensive
– Scissor and depth bounds test help

• Significant CPU work required
– Silhouette determination

– Building shadow volumes
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Hardware Support

• GL_EXT_stencil_two_side

• GL_ATI_separate_stencil_func
– Both allow different stencil operations to be 

executed for front and back facing polygons

• GL_EXT_depth_bounds_test
– Helps reduce frame buffer writes

• Double-speed rendering

Scissor Optimizations

• Most important fill-rate optimization for 
stencil shadows

• Even more important for penumbral wedge 
shadows

• Hardware does not generate fragments 
outside the scissor rectangle — very fast
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Scissor Optimizations

• Scissor rectangle can be applied
on a per-light basis or even a
per-geometry basis

• Requires that lights have a finite volume of 
influence
– What type of light is this?

Light Scissor

CameraCamera

LightLight

Image PlaneImage Plane

View FrustumView Frustum
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Light Scissor

• Project light volume onto the image plane

• Intersect extents with the viewport to get 
light’s scissor rectangle

• Mathematical details at:
– http://www.gamasutra.com/features/

20021011/lengyel_01.htm

No Light ScissorNo Light Scissor

Shadow volumes extendShadow volumes extend
to edges of viewportto edges of viewport

Light ScissorLight Scissor

Shadow volume fillShadow volume fill
reduced significantlyreduced significantly
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Depth Bounds Test

CameraCamera

LightLight

View FrustumView Frustum

Max DepthMax Depth

Min DepthMin Depth

Depth Bounds Test

• Like a z scissor, but...

• Operates on values already in the depth 
buffer, not the depth of the incoming 
fragment

• Saves writes to the stencil buffer when 
shadow-receiving geometry is out of range
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Depth Bounds Test

CameraCamera

Max DepthMax Depth

Min DepthMin Depth

RejectedRejected
FragmentsFragments

ShadowShadow
VolumeVolume

ShadowShadow
ReceiverReceiver

No Depth Bounds TestNo Depth Bounds Test

Shadow volumes extendShadow volumes extend
closer to and furthercloser to and further
from camera thanfrom camera than
necessarynecessary

Depth Bounds TestDepth Bounds Test

Shadow volume fillShadow volume fill
outside depth boundsoutside depth bounds
is removedis removed
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No Depth Bounds TestNo Depth Bounds Test

A lot of extra shadowA lot of extra shadow
volume fill where wevolume fill where we
know it canknow it can’’t have anyt have any
effecteffect

Depth Bounds TestDepth Bounds Test

Parts that canParts that can’’tt
possibly intersect thepossibly intersect the
environment removedenvironment removed

Depth Bounds Test

• Depths bounds specified in viewport 
coordinates

• To get these from camera space, we need 
to apply projection matrix and viewport 
transformation

• Apply to points (0,0,z,1)
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Depth Bounds Test

• Let P be the projection matrix and let [dmin, 
dmax] be the depth range

• Viewport depth d corresponding to camera 
space z is given by

max min 33 34 max min

43 442 2

d d P z P d d
d

P z P

   
   

Geometry Scissor

• We can do much better than a single 
scissor rectangle per light

• Calculate a scissor rectangle for each 
geometry casting a shadow
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Geometry Scissor

• Define a bounding box for the light
– Doesn’t need to contain the entire sphere of 

influence, just all geometry that can receive 
shadows

– For indoor scenes, the bounding box is 
usually determined by the locations of walls

Geometry Scissor

BoundingBounding
BoxBox

LightLight
SphereSphere
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Geometry Scissor

• For each geometry, define a simple 
bounding polyhedron for its shadow 
volume
– Construct a pyramid with its apex at the light’s 

position and its base far enough away to be 
outside the light’s sphere of influence

– Want pyramid to be as tight as possible 
around geometry

Geometry Scissor

LightLight’’ss
BoundingBounding

BoxBox

LightLight
SphereSphere

ShadowShadow
VolumeVolume

BoundingBounding
PolyhedronPolyhedron
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Geometry Scissor

• Clip shadow volume’s bounding 
polyhedron to light’s bounding box

• Project vertices of resulting polyhedron 
onto image plane

• This produces the boundary of a much 
smaller scissor rectangle

• Also gives us a much smaller depth 
bounds range

Geometry Scissor

LightLight’’ss
BoundingBounding

BoxBox

LightLight
SphereSphere

ClippedClipped
BoundingBounding

PolyhedronPolyhedron
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CameraCamera

Geometry Scissor

Scissor RectangleScissor Rectangle

DepthDepth
BoundsBounds

Image PlaneImage Plane

Geometry Scissor

CameraCamera

ScissorScissor

DepthDepth
BoundsBounds

Image PlaneImage Plane
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No Geometry ScissorNo Geometry Scissor

Light scissor rectangleLight scissor rectangle
and depth bounds testand depth bounds test
are no help at all inare no help at all in
this casethis case

Geometry ScissorGeometry Scissor

Shadow volume fillShadow volume fill
drastically reduceddrastically reduced

Scissor and Depth Bounds

• Performance increase for ordinary stencil 
shadows not spectacular

• Real-world scenes get about 5-8% faster 
using per-geometry scissor and depth 
bounds test

• Hardware is doing very little work per 
fragment, so reducing number of 
fragments is not a huge win
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Scissor and Depth Bounds

• For penumbral wedge rendering, it’s a 
different story

• We will do much more work per fragment, 
so eliminating a lot of fragments really 
helps

• Real-world scenes can get 40-45% faster 
using per-geometry scissor and depth 
bounds test

Stenciled Shadow Volume 
Optimizations (1)

• Use GL_QUAD_STRIP rather than GL_QUADS to 
render extruded shadow volume quads
– Requires determining possible silhouette loop connectivity

• Mix Zfail and Zpass techniques
– Pick a single formulation for each shadow volume

– Zpass is more efficient since shadow volume does not need to 
be closed

– Mixing has no effect on net shadow depth count

– Zfail can be used in the hard cases
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Stenciled Shadow Volume 
Optimizations (2)

• Pre-compute or re-use cache shadow volume 
geometry when geometric relationship between a light 
and occluder does not change between frames
– Example:  Headlights on a car have a static shadow volume 

w.r.t. the car itself as an occluder

• Advanced shadow volume culling approaches
– Uses portals, Binary Space Partitioning trees, occlusion 

detection, and view frustum culling techniques to limit shadow 
volumes

– Careful to make sure such optimizations
are truly correct

Stenciled Shadow Volume 
Optimizations (3)

• Take advantage of ad-hoc knowledge of scenes 
whenever possible
– Example:  A totally closed room means you do not have to 

cast shadow volumes for the wall, floor, ceiling

• Limit shadows to important entities
– Example:  Generate shadow volumes for monsters and 

characters, but not static objects

– Characters can still cast shadows on static objects

• Mix shadow techniques where possible
– Use planar projected shadows or

light-maps where appropriate
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Stenciled Shadow Volume 
Optimizations (4)

• Shadow volume’s extrusion for directional lights can be 
rendered with a GL_TRIANGLE_FAN
– Directional light’s shadow volume always projects to a single 

point at infinity

Scene with
directional light.

Clip-space view of
shadow volume

Hardware Enhancements:
Wrapping Stencil Operations

• Conventional OpenGL 1.0 stencil operations
– GL_INCR increments and clamps to 2N-1

– GL_DECR decrements and clamps to zero

• DirectX 6 introduced “wrapping” stencil operations

• Exposed by OpenGL’s EXT_stencil_wrap extension
– GL_INCR_WRAP_EXT increments modulo 2N

– GL_DECR_WRAP_EXT decrements modulo 2N

• Avoids saturation throwing off the shadow
volume depth count
– Still possible, though very rare, that 2N,

22N, 32N, etc. can alias to zero
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Hardware Enhancements:
Depth Clamp (1)

• What is depth clamping?
– Boolean hardware enable/disable

– When enabled, disables the near & far clip planes

– Interpolate the window-space depth value

– Clamps the interpolated depth value to
the depth range, i.e. [min(n,f),max(n,f)]

• Assuming glDepthRange(n,f);

– Geometry “behind” the far clip plane is still rendered 
• Depth value clamped to farthest Z

• Similar for near clip plane, as long as w>0,
except clamped to closest Z

Hardware Enhancements:
Depth Clamp (2)

• Advantage for stenciled shadow volumes
– With depth clamp, P (rather than Pinf) can be used with our 

robust stenciled shadow volume technique

– Marginal loss of depth precision re-gained

– Orthographic projections can work with our technique with 
depth clamping

• NV_depth_clamp OpenGL extension
– Easy to use

glEnable(GL_DEPTH_CLAMP_NV);
glDisable(GL_DEPTH_CLAMP_NV);

– GeForce3 & GeForce4 Ti support (soon)
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Hardware Enhancements:
Two-sided Stencil Testing (1)

• Current stenciled shadow volumes required rendering 
shadow volume geometry twice
– First, rasterizing front-facing geometry

– Second, rasterizing back-facing geometry

• Two-sided stencil testing requires only one pass
– Two sets of stencil state: front- and back-facing

– Boolean enable for two-sided stencil testing

– When enabled, back-facing stencil state is used for stencil 
testing back-facing polygons

– Otherwise, front-facing stencil state is used

– Rasterizes just as many fragments,
but more efficient for CPU & GPU

Hardware Enhancements:
Two-sided Stencil Testing (2)

glStencilMaskSeparate and 
glStencilOpSeparate (face, fail, zfail, zpass)
glStencilFuncSeparate (face, func, ref, mask)

– Control of front- and back-facing stencil state 
update

Now part of OpenGL
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Performance

• Have to render lots of huge polygons
– Front face increment
– Back face decrement
– Possible capping pass

• Burns fill rate like crazy
• Turn off depth and color write, though
• Gives accurate shadows

– IF implemented correctly
– When fails, REALLY fails

• Need access to geometry if want to use silhouette 
optimization

Slide Credits

• Cass Everitt & Mark Kilgard, NVidia
– GDC 2003 presentation

• Timo Aila, Helsinki U. Technology

• Jeff Russell

• David Luebke, University of Virginia

• Michael McCool, University of Waterloo

• Eric Lengyel, Naughty Dog Games
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Insight!

• If we could avoid either near plane or far plane view 
frustum clipping, shadow volume rendering could be 
robust

• Avoiding near plane clipping
– Not really possible

– Objects can always be behind you

– Moreover, depth precision in a perspective view goes to hell 
when the near plane is too near the eye 

• Avoiding far plane clipping
– Perspective make it possible to render at infinity

– Depth precision is terrible at infinity, but
we just care about avoiding clipping
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Avoiding Far Plane Clipping

• Usual practice for perspective GL projection matrix
– Use glFrustum (or gluPerspective)

– Requires two values for near & far clip planes
• Near plane’s distance from the eye

• Far plane’s distance from the eye

– Assumes a finite far plane distance

• Alternative projection matrix
– Still requires near plane’s distance from the eye

– But assume far plane is at infinity

• What is the limit of the projection matrix when
the far plane distance goes to infinity?

Standard glFrustum Projection 
Matrix



















































0100

2
00

0
2

0

00
2

NearFar

NearFar

NearFar

NearFar
BottomTop

BottomTop

BottomTop

Near
LeftRight

LeftRight

LeftRight

Near

P

 Only third row depends on Far and Near
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Limit of glFrustum Projection Matrix as 
Far Plane is Moved to ∞











































0100

2100

0
2

0

00
2

lim

Near
BottomTop

BottomTop

BottomTop

Near
LeftRight

LeftRight

LeftRight

Near

Far
infPP

 First, second, and fourth rows are the same as in P

 But third row no longer depends on Far

 Effectively, Far equals 

Verifying Pinf Will Not Clip
Infinitely Far Away Vertices (1)

• What is the most distant possible vertex in front of the 
eye?
– Ok to use homogeneous coordinates

– OpenGL convention looks down the negative Z axis

– So most distant vertex is (0,0,-D,0) where D>0

• Transform (0,0,-D,0) to window space
– Is such a vertex clipped by Pinf?

– No, it is not clipped, as explained on the next slide
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Verifying Pinf Will Not Clip
Infinitely Far Away Vertices (2)

• Transform eye-space (0,0,-D,0) to clip-space



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
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D

w

z
z

c
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w

 Then, assuming glDepthRange(0,1), transform clip-space position to 
window-space position

 So  in front of eye transforms to the maximum
window-space Z value, but is still within
the valid depth range (i.e., not clipped)

Is Pinf Bad for Depth Buffer 
Precision?

• Naïve question
– Wouldn’t moving the far clip plane to infinity waste depth buffer 

precision?  Seems plausible, but

• Answer: Not really
– Minimal depth buffer precision is wasted in practice

– This is due to projective nature of perspective

• Say Near is 1.0 and Far is 100.0 (typical situation)
– P would transform eye-space infinity to only 1.01 in window 

space

– Only a 1% compression of the depth range
is required to render infinity without clipping

– Moving near closer would hurt precision



50

Pinf Depth Precision Scale Factor

• Using Pinf with Near instead of P with Near and Far
compresses (scales) the depth precision by

Far

NearFar )( 

 The compression of depth precision is uniform, but the depth precision 
itself is already non-uniform on  eye-space interval [Near,Far] due to 
perspective
– So the discrete loss of precision is more towards the far clip plane

 Normally, Far >> Near so the scale factor
is usually less than but still nearly 1.0
– So the compression effect is minor

Robust Stenciled Shadow Volumes w/o 
Near (or Far) Plane Capping

• Use Zfail Stenciling Approach
– Must render geometry to close shadow volume extrusion on the 

model and at infinity (explained later)

• Use the Pinf Projection Matrix
– No worries about far plane clipping

– Losses some depth buffer precision (but not much)

• Draw the infinite vertices of the shadow volume using 
homogeneous coordinates (w=0)
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Rendering Closed, but Infinite,
Shadow Volumes

• To be robust, the shadow volume geometry must be 
closed, even at infinity

• Three sets of polygons close the shadow volume
1. Possible silhouette edges extruded to infinity away from the 

light

2. All of the occluder’s back-facing (w.r.t. the light) triangles 
projected away from the light to infinity

3. All of the occluder’s front-facing (w.r.t. the light) triangles

• We assume the object vertices and light position are 
homogeneous coordinates, i.e. (x,y,z,w)
– Where w0

1st Set of Shadow Volume 
Polygons

• Assuming
– A and B are vertices of an occluder model’s possible silhouette 

edge

– And L is the light position

• For all A and B on silhouette edges of the occluder 
model, render the quad

0,,,

0,,,

,,,

,,,

wzwzwywywxwx

wzwzwywywxwx

wzyx

wzyx

BLLBBLLBBLLB

ALLAALLAALLA

AAAA

BBBB





 What is a possible silhouette edge?
– One polygon sharing an edge faces toward L
– Other faces away from L

Homogenous 
vector differences
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2nd and 3rd Set of
Shadow Volume Polygons

• 2nd set of polygons
– Assuming A, B, and C are each vertices of occluder model’s 

back-facing triangles w.r.t. light position L

• These vertices are effectively directions (w=0)

• 3rd set of polygons
– Assuming A, B, and C are each vertices of occluder model’s front-

facing triangles w.r.t. light position L

0,,,

0,,,

0,,,

wzwzwywywxwx

wzwzwywywxwx

wzwzwywywxwx

CLLCCLLCCLLC

BLLBBLLBBLLB

ALLAALLAALLA







wzyx

wzyx

wzyx

CCCC

BBBB

AAAA

,,,

,,,

,,,

Homogenous 
vector differences

Shadow Volumes

• Basic idea: 
– Create polygonal objects to represent 

shadowed volumes

– Make clever use of stencil buffer so that these 
objects affect what lighting is done
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Stencil Buffer

• The stencil buffer has been around since 
OpenGL 1.0
– Basic idea: provide a per-pixel flag to indicate 

whether pixels are drawn or not

– But…

– Let that flag be an integer (usually 8 bits)
• Usually shared with depth buffer

– And let drawing operations increment or decrement 
the stencil buffer based on different events

• Always, depth-pass, depth-fail, etc.

Shadow Volumes

• Refinements (see book, next slides)
– NV30, XBox supports signed stencil addition

• Two-sided lighting determines whether polygon adds or subtracts 1 
from stencil buffer

• One-pass algorithm!  But a little slower in practice?

– What if you’re inside a shadow volume?
• Invert meaning of stencil test

– What if near clip intersects shadow plane?
• Carmack, others: use z-fail test

• Clever extensions in NV2X help this idea out

– Creating shadow volumes: vertex program!
• ATI: clever degenerate-edge trick again
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Shadow Volumes

• Advantages:
– Robust

– Self-shadowing

– GPU

• Disadvantages:
– Can be geometry limited

• Stencil polys

• Multi-pass scene geometry

– Can be fill limited

– Stencil test – per pixel expense

– Hard shadows

• McCool
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Near Plane Clip Issues

Near Plane Clip Issues

• Near plane clip discards part of shadow volume
• Can see inside, messes up count
• Can draw “caps”

– Use projected shadows on near plane
– Not exact, get little pixel dropouts

• Better: do another pass, see where can see inside of 
shadow volume

• Only do extra pass when volume intersects visible near 
plane

• Or, use z clamping when rendering…
• Reversal of z test can help
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MethodsMethods w/o w/o StencilStencil BufferBuffer

IdeaIdea:: Compute shadow mask Compute shadow mask in in screen bufferscreen buffer

Problem:Problem: dstColordstColor := := dstColordstColor -- 11 not not availableavailable

Solution:Solution: InsteadInstead +1 +1 :: *2*2 (double (double valuesvalues))

InsteadInstead --1  1  :: /2/2 ((halvehalve valuesvalues))

Blend functions forBlend functions for *2, /2:*2, /2:

ccdstdst := := ff**ccsrcsrc + + gg**ccdstdst

*2: *2: f=f=ccdstdst, , ccsrcsrc=1, g=1 =1, g=1  ccdstdst := := ccdstdst*1*1 + 1*+ 1*ccdstdst

/2: /2: f=0, g=0.5f=0, g=0.5  ccdstdst := 0 + := 0 + ccdstdst*0.5*0.5

Pixel Pixel StatesStates

 InitializeInitialize all all pixelspixels withwith colorcolor valuevalue 1/41/4

1/41/4 1/21/2 11

*2*2

/2/2

*2*2

/2/2

*2  (*2  (ClampingClamping!)!)

State changesState changes::
Point inPoint in shadow volumeshadow volume:: *2*2
Point in front Point in front of shadow volumeof shadow volume:: no changeno change
Point Point behind shadow solumebehind shadow solume:: *2 , /2*2 , /2

 Clamping doesClamping does notnot invalidate statesinvalidate states!!

StatesStates: : 1/4 = 1/4 = litlit, 1/2 & 1 =, 1/2 & 1 = shadowedshadowed
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Shadow Mask NormalizationShadow Mask Normalization
ApplyApply thethe followingfollowing operationsoperations to to thethe shadowshadow maskmask::

1/41/4 1/21/2 11

*2*2

1/21/2

1/21/2

11

11

00

00

*2*2

LightLight ShadowShadow

InvertInvert

(c:=1(c:=1--c)c)

Shadow Mask ApplicationShadow Mask Application

•• BlackBlack shadowsshadows:: MultiplyMultiply b/w b/w shadowshadow maskmask withwith
scenescene: : render the scenerender the scene withwith ccdstdst := := ccdstdst * * ccsrcsrc

•• AmbientAmbient shadowsshadows:: Render sceneRender scene againagain to to addadd
ambient lighting termambient lighting term withwith ccdstdst := := ccdstdst + + ccsrcsrc

•• QuickNDirtyQuickNDirty shadowsshadows:: Halve intensityHalve intensity ofof
shadowedshadowed pixels by means of normalizationpixels by means of normalization to to 
0.5/1 0.5/1 andand with cwith cdstdst := := ccdstdst ** ccsrcsrc
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ExampleExample: : Shadow MaskShadow Mask

ExampleExample: : NormalizationNormalization



59

Example: Shadowed Scene

Extensions Extensions to to the Algorithmthe Algorithm

  The shadow mask can The shadow mask can alsoalso be computedbe computed inin the alphathe alpha--
channel which performs even faster than thechannel which performs even faster than the originaloriginal
algorithmalgorithm..

  Then the shadow mask can be copied efficiently intoThen the shadow mask can be copied efficiently into an an 
alpha texture map and applied afterwardsalpha texture map and applied afterwards..

  Advantages:Advantages:
–– Scene is rendered only once for quickndirty shadowsScene is rendered only once for quickndirty shadows..

–– Computation of shadow mask with lower resolution than Computation of shadow mask with lower resolution than 
screen bufferscreen buffer  shadow mask is rasterized much fastershadow mask is rasterized much faster..
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Shadow Volumes without StencilsShadow Volumes without Stencils
•• Efficient computation of dynamic shadowsEfficient computation of dynamic shadows possiblepossible

without stencilwithout stencil bufferbuffer..

•• ShadowShadow maskmask isis computedcomputed eithereither in in screenscreen buffer buffer oror in in 
alphaalpha--channel channel (PS2).(PS2).

•• IdeaIdea:: UtilizeUtilize *2*2, , /2/2 operationsoperations insteadinstead ofof +1+1, , --11..

•• Different Different modes of applicationmodes of application: : BlackBlack, , ambientambient, , oror
quickndirtyquickndirty shadowsshadows ((scenescene renderedrendered onlyonly onceonce in in thethe
latterlatter casecase).).

•• By copyingBy copying thethe shadowshadow maskmask intointo a a alphaalpha--texture the texture the 
shadow mask canshadow mask can bebe computedcomputed atat lowerlower resoutionsresoutions thanthan
thethe screenscreen bufferbuffer  overcome rasterizationovercome rasterization bottleneckbottleneck..


