
3/29/2016

1

Tutorial 7

Real-Time Volume Graphics

Klaus Engel

Markus Hadwiger

Christof Rezk Salama

Real-Time Volume Graphics

[01] Introduction and Theory

Appliations: Medicine

CT Angiography:
Dept. of Neuroradiology
University of Erlangen,
Germany

CT Human Head:
Visible Human Project,
US National Library of
Medicine, Maryland,
USA

Applications: Geology

Muschelkalk:
Paläontologie,
Virtual Reality Group,
University of Erlangen

Deformed Plasticine Model,
Applied Geology,
University of Erlangen

Applications: Archeology

Hellenic Statue of Isis
3rd century B.C.
ARTIS, University of Erlangen-
Nuremberg, Germany

Sotades Pygmaios Statue,
5th century B.C
ARTIS, University of Erlangen-
Nuremberg, Germany

Applications:

Micro CT, Compound Material,
Material Science Department, University
of Erlangen

Material Science,

Quality Control

Biology

biological sample of the soil, CT,
Virtual Reality Group,
University if Erlangen

3/29/2016

2

Applications

Computational
Science and Engineering

Applications: Computer Science

Visualization of Pseudo Random Numbers

Entropy of Pseudo Random
Numbers,
Dan Kaminsky, Doxpara Research, USA,
www.doxpara.com

Outline

Data Set 3D Rendering

in real-time on
commodity graphics hardware

Classification

Transfer Functions (TFs)

Human Tooth CT

(f)RGB(f)

f

RGB

Shading,
Compositing…

Map data value f to
color and opacity

in-scattering

D
ec

re
as

e

true absorption out-scattering

In
cr

ea
se

true emission

Physical Model of Radiative Transfer

Extinction τ
Absorption к

Ray Integration

How do we determine the radiant energy along the
ray?
Physical model: emission and absorption, no scattering

viewing ray
Absorption along the

ray segment s0 - s

Initial intensity
at s0

Without absorption all
the initial radiant energy
would reach the point s.

3/29/2016

3

Ray Integration

How do we determine the radiant energy along the
ray?
Physical model: emission and absorption, no scattering

viewing ray

Absorption along the
distance s - s ~Active emission

at point s~

One point along the
viewing ray emits additional
radiant energy.

Ray Casting

Software Solution

Image Plane

Data Set

Numerical Integration

Resampling

High Computational Load

Eye

Numerical Solution

Extinction:

Approximate Integral by Riemann sum:

Numerical Solution

Now we introduce opacity:

Now we introduce opacity:

Numerical Solution Numerical Solution

can be computed recursively

Radiant energy
observed at position i

Radiant energy
emitted at position i

Radiant energy
observed at position i–1

Absorption at
position i

3/29/2016

4

can be computed recursively

Numerical Solution

Back-to-front
compositing

Front-to-back
compositing

Early Ray Termination:

Stop the calculation when

Summary

Emission Absorption Model

Numerical Solutions

true emission true absorption

Back-to-front iteration Front-to-back iteration

Real-Time Volume Graphics

[03] GPU-Based
Volume Rendering

Volume Rendering

Image Plane

Image order approach:

For each pixel {

calculate color of the pixel

}

Data Set

Eye

Volume Rendering

Image Plane

Image order approach:

For each slice {

calculate contribution to the image

}

Data Set

Eye

Object order approach:

For each pixel {

calculate color of the pixel

}

Texture-based Approaches

Proxy geometry (Polygonal Slices)

No volumetric hardware-primitives!

3/29/2016

5

How does a texture work?

Texture

R G B A

For each fragment:
interpolate the

texture coordinates
(barycentric)

Texture-Lookup:
interpolate the
texture color

(bilinear)

2D Textures

Decompostition into axis-aligned slices

Draw the volume as a stack of 2D textures
Bilinear Interpolation in Hardware

3 copies of the data set in memory

Implementation Implementation

Fragment Program

We assume here that the RGBA texture already contains
emission/absoption coefficients.

Transfer functions are discussed later

Compositing

The standard alpha blending causes color bleeding!

Vertex A:

Vertex B:

Vertex C:

RGBA = (1,0,0,1)

RGBA = (0,0,1,1)

RGBA = (0,1,0,1)

RGBA = (1,0,0,0)

RGBA = (0,0,1,1)

RGBA = (0,1,0,0)

Solution: Associated Colors:

RGB values must be
pre-multiplied by opacity A!

RGBA = (0,0,0,0)

RGBA = (0,0,1,1)

RGBA = (0,0,0,0)

3/29/2016

6

Compositing

Maximum Intensity Projection
No emission/absorption
Simply compute maximum value along a ray

Compositing

Emission/Absorption Maximum Intensity Projection

2D Textures: Drawbacks

Sampling rate is inconsistent

d
d´ ≠ d

Emission/absorption slightly incorrect

Super-sampling on-the-fly impossible

3D Textures

R G B A

R

G
B

For each fragment:
interpolate the

texture coordinates
(barycentric)

Texture-Lookup:
interpolate the
texture color

(trilinear)

Don‘t be confused: 3D textures are not
volumetric rendering primitives!

Only planar polygons are supported as
rendering primitives.

3D Textures

Slices parallel to the image plane

3D Texture: Volumetric Texture Object

Trilinear Interpolation in Hardware

One large texture block in memory

Resampling via 3D Textures

Sampling rate is constant

d d

Supersampling by increasing the
number of slices

3/29/2016

7

Bricking

What happens if data set is too
large to fit into local video memory?
Divide the data set into
smaller chunks (bricks)

One plane of voxels must be duplicated to
enable correct interpolation across brick boundaries

incorrect interpolation!

GPU

Bus

Bricking

What happens if data set is too
large to fit into local video memory?
Divide the data set into
smaller chunks (bricks)

Problem: Bus-Bandwidth

Unbalanced Load for GPU und Memory Bus

transfer brick Transfer brick

drawdraw

TimeInefficient!

Bricking

What happens if data set is too
large to fit into local video memory?
Divide the data set into
smaller chunks (bricks)

Problem: Bus-Bandwidth

Keep the bricks small enough!
More than one brick must fit into video memory !

Transfer and Rendering can be performed in parallel

Increased CPU load for intersection calculation!

Effective load balancing still very difficult!

Cube-Slice Intersection

Question: Can we compute this in a vertex program?

Vertex program:
Input: 6 Vertices
Output: 6 Vertices

P0: Intersection with red path

P2: Intersection with green path

P4: Intersection with blue path

P1: Intersection with dotted red edge or P0

P3: Intersection with dotted green edge or P1

P5: Intersection with dotted blue edge or P2

Back to 2D Textures

fixed number of object aligned slices
visual artifacts due to bilinear interpolation

Utilize Multi-Textures (2 textures per polygon) to
implement trilinear interpolation!

Bilinear Interpolation
by 2D Texture Unit

2D Multi-Textures

Axis-Aligned Slices

Trilinear Interpolation

Blending of two adjacent
slice images

3/29/2016

8

Implementation Implementation

2D Multi-Textures

Sampling rate is constant

Supersampling by increasing the
number of slices

d
d

Advantages

More efficient load balancing

GPU

Bus transfer

draw

transfer transfer

draw

transfer

draw

Exploit the GPU and the available memory bandwidth in
parallel

Transfer the smallest amount of information required to
draw the slice image!

Significanly higher performance, although 3
copies of the data set in main memory

time

Summary

Rasterization Approaches for Direct Volume
Rendering
2D Texture Based Approaches

3 fixed stacks of object aligned slices
Visual artifacts due to bilinear interpolation only
No supersampling

3D Texture Based Approaches
Viewport aligned slices
Supersampling with trilinear interpolation
Bricking: Bus transfer inefficient for large volumes

2D Texture Based Approaches
3 variable stacks of object aligned slices
Supersampling with Trilinear interpolation
Higher performance for larger volumes

Real-Time Volume Graphics

[04] GPU-Based Ray-Casting

3/29/2016

9

Talk Outline

Why use ray-casting instead of slicing?

Ray-casting of rectilinear (structured) grids
Basic approaches on GPUs

Basic acceleration methods

Object-order empty space skipping

Isosurface ray-casting

Endoscopic ray-casting

Why Ray-Casting on GPUs?

Most GPU rendering is object-order
(rasterization)

Image-order is more “CPU-like”
Recent fragment shader advances

Simpler to implement

Very flexible (e.g., adaptive sampling)

Correct perspective
projection

Can be implemented
in single pass!

Native 32-bit
compositing

Where Is Correct Perspective Needed?

Entering the volume

Wide field of view

Fly-throughs

Virtual endoscopy

Integration into
perspective scenes,
e.g., games

Recent GPU Ray-Casting Approaches

Rectilinear grids
[Krüger and Westermann, 2003]

[Röttger et al., 2003]

[Green, 2004] (NVIDIA SDK Example)

[Stegmaier et al., 2005]

[Scharsach et al., 2006]

Unstructured (tetrahedral) grids
[Weiler et al., 2002, 2003, 2004]

[Bernardon, 2004]

Single-Pass Ray-Casting

Enabled by conditional loops in fragment
shaders (Shader Model 3; e.g., Geforce 6800,
ATI X1800)

Substitute multiple passes and early-z testing by
single loop and early loop exit

No compositing buffer: full 32-bit precision!

NVIDIA example: compute ray
intersections with bounding box,
march along rays and composite

Basic Ray Setup / Termination

Two main approaches:
Procedural ray/box intersection
[Röttger et al., 2003], [Green, 2004]

Rasterize bounding box
[Krüger and Westermann, 2003]

Some possibilities
Ray start position and exit check

Ray start position and exit position

Ray start position and direction vector

3/29/2016

10

Procedural Ray Setup/Termination

Everything handled in the fragment shader

Procedural ray / bounding box intersection

Ray is given by camera position
and volume entry position

Exit criterion needed

Pro: simple and self-contained

Con: full load on the fragment shader

Fragment Shader

Rasterize front faces
of volume bounding box

Texcoords are volume
position in [0,1]

Subtract camera position

Repeatedly check for
exit of bounding box

- =

"Image-Based" Ray Setup/Termination

Rasterize bounding box front faces and back
faces
[Krüger and Westermann, 2003]

Ray start position: front faces

Direction vector: back−front faces

Independent of projection
(orthogonal/perspective)

Standard Ray-Casting Optimizations (1)

Early ray termination
Isosurfaces: stop when surface hit

Direct volume rendering:
stop when opacity >= threshold

Several possibilities
Older GPUs: multi-pass rendering with early-z test

Shader model 3: break out of ray-casting loop

Current GPUs: early loop exit not optimal but good

Standard Ray-Casting Optimizations (2)

Empty space skipping
Skip transparent samples

Depends on transfer function

Start casting close to first hit

Several possibilities
Per-sample check of opacity (expensive)

Traverse hierarchy (e.g., octree) or regular grid

These are image-order: what about object-order?

Object-Order Empty Space Skipping (1)

Modify initial rasterization step

rasterize bounding box rasterize “tight" bounding geometry

3/29/2016

11

Object-Order Empty Space Skipping (2)

Store min-max values of volume bricks

Cull bricks against isovalue or transfer function

Rasterize front and back faces of active bricks

Object-Order Empty Space Skipping (3)

Rasterize front and back faces
of active min-max bricks

Start rays on brick front faces

Terminate when
Full opacity reached, or

Back face reached

Object-Order Empty Space Skipping (3)

Rasterize front and back faces
of active min-max bricks

Start rays on brick front faces

Terminate when
Full opacity reached, or

Back face reached

Not all empty space
is skipped

Isosurface Ray-Casting

Isosurfaces/Level Sets
scanned data

distance fields

CSG operations

level sets: surface editing, simulation, segmentation,
…

Intersection Refinement (1)

Fixed number of bisection or binary search
steps

Virtually no impact on performance

Refine already detected
intersection

Handle problems with small
features / at silhouettes with
adaptive sampling

Intersection Refinement (2)

without refinement with refinement

sampling rate 1/5 voxel (no adaptive sampling)

3/29/2016

12

Intersection Refinement (3)

Sampling distance 1.0, 24 fps Sampling distance 5.0, 66 fps

Deferred Isosurface Shading

Shading is expensive
Gradient computation; conditional execution not free

Ray-casting step computes only intersection
image

Enhancements (1)
Build on image-based ray setup

Allow viewpoint inside the volume

Intersect polygonal geometry

Enhancements (2)
1. Starting position computation

 Ray start position image

2. Ray length computation
 Ray length image

3. Render polygonal geometry
 Modified ray length image

4. Raycasting
 Compositing buffer

5. Blending
 Final image

Moving Into The Volume (1)
Near clipping plane clips into front faces

Fill in holes with near clipping plane
Can use depth buffer [Scharsach et al., 2006]

Moving Into The Volume (2)

1. Rasterize near clipping plane
Disable depth buffer, enable color buffer
Rasterize entire near clipping plane

2. Rasterize nearest back faces
Enable depth buffer, disable color buffer
Rasterize nearest back faces of active bricks

3. Rasterize nearest front faces
Enable depth buffer, enable color buffer
Rasterize nearest front faces of active bricks

3/29/2016

13

Virtual Endoscopy
Viewpoint inside the volume
with wide field of view

E.g.: virtual colonoscopy

Hybrid isosurface rendering /
direct volume rendering

E.g.: colon wall and
structures behind

Virtual Colonoscopy
First find isosurface; then continue with DVR

Virtual Colonoscopy
First find isosurface; then continue with DVR

Hybrid Ray-Casting (1)

Isosurface rendering
Find isosurface first

Semi-transparent shading provides
surface information

Additional unshaded DVR
Render volume behind the surface
with unshaded DVR

Isosurface is starting position

Start with (1.0-iso_opacity)

Hybrid Ray-Casting (2)

Hiding sampling artifacts (similar to interleaved
sampling, [Heidrich and Keller, 2001])

Conclusions

GPU ray-casting is an attractive alternative

Very flexible and easy to implement

Fragment shader conditionals are very powerful;
performance pitfalls very likely to go away

Mixing image-order and object-order well suited
to GPUs (vertex and fragment processing!)

Deferred shading allows complex filtering and
shading at high frame rates

3/29/2016

14

Thank You!

Acknowledgments
Henning Scharsach, Christian Sigg, Daniel Weiskopf
VRVis is funded by the Kplus program of the Austrian government

Tetrahedral Grids

Traditional (rasterization): Projected Tetrahedra

Ray casting: store mesh in textures

Propagate from cell to cell

Ray/face intersection computations

Pre-integration; (store current pos in texture)

[Weiler et al.]

Tetrahedral Grids

fd

Tetrahedral Grids

dfd

Real-Time Volume Graphics

[05] Transfer Functions

Classification

During Classification the user defines the
„Look“ of the data.

Which parts are transparent?

Which parts have which color?

3/29/2016

15

Classification

During Classification the user defines the
„Look“ of the data.

Which parts are transparent?

Which parts have which color?

The user defines a Transfer Function.

Emission RGB

Absorption A
scalar S Transfer

Function

Classification

Real-Time update of the transfer function
necessary!!!

Classification Pre- vs Post-Interpolative Classification
o

p
ti

c
a

l p
ro

p
e

rt
ie

s

data value

in
te

rp
o

la
ti

o
n

PRE-INTERPOLATIVE

o
p

ti
c

a
l p

ro
p

e
rt

ie
s

data value

interpolation

POST-INTERPOLATIVE

Pre-Classification

Geometry
Processing

Rasterization
Fragment

Operations
Transfer
Function

A color value is fetched from a table
for each Voxel

A RGBA Value is determined
for each Voxel

Pre-Classification:Pre-Classification:
Color table is applied before interpolation.

(pre-interpolative Transferfunction)

Possible Implementations

The naive Approach:
Save Emission and Absorption terms directly in
the Texture.

Main Memory Graphics Memory

scalar value S

RGBA RGBA TextureA
G

P
/P

C
Ie

3/29/2016

16

Possible Implementations

The naive Approach:
Save Emission and Absorption terms directly in
the Texture.

Very high memory consumption
Main Memory (RGBA und scalar volumes)

Graphics Memory (RGBA volume)

High Load on memory bus
RGBA Volume must be transferred.

Upload necessary on TF change

Possible Implementations

A better Approach:
Apply color table during
texture transfers from main memory to
graphics card (standard OpenGL feature)

Main Memory Graphics Memory

scalar value S

RGBA TextureA
G

P
/P

C
Ie

scalar value S

Possible Implementations

A better Approach:
Apply color table during
texture transfers from main memory to
graphics card (standard OpenGL feature)

High memory consumption
Main Memory (only scalar volume)
Graphics Memory (RGBA volume)

Reduced load on memory bus
Only the scalar volume is transferred.

Upload necessary on TF change

Possible Implementations

The best approach: Paletted Textures
Store the scalar volume together with the color table
directly in graphics memory.

Hardware-Support necessary!

Main Memory Graphics Memory

Scalar Texturescalar value S

Texture paletteA
G

P
/P

C
Ie

Transferfunction

Possible Implementations

The best approach: Paletted Textures
Store the scalar volume together with the color table
directly in graphics memory.

Hardware-Support necessary!

Low memory consumption
Main Memory (scalar volume can be deleted!)

Graphics Memory (scalar volume + TF)

Low load on memory bus
Scalar volume must be transferred only once!

Only the color table must be re-uploaded on TF
change

Pre-Classification Summary
Summary Pre-Classification

Application of the Transferfunction before
Rasterization
One RGBA Lookup for each Voxel
Different Implementations:

Texture Transfer
Texture Color Tables (paletted textures)

Simple and Efficient
Good for coloring segmented data

3/29/2016

17

Post-Classification

Geometry
Processing

Rasterization
Fragment

Operations
Transfer
Function

A color is fetched from the color table
for each Fragment

Post-Classification:Post-Classification:
The color table is applied after Interpolation

(post-interpolative Transfer Function).

Post-Classification
Texture 0 = Scalar field

Texture 1 = Transfer Function [Emission RGB, Absorption A]

R=G=B=A=
Scalar field S

R

RGBA

= T(S)
Polygon

CG Implementation
//fragment program for post-classification
//using 3D textures
float4 main (float3 texUV : TEXCOORD0,

uniform sampler3D volume_texture,
uniform sampler1D transfer_function) :

COLOR
{

float index = tex3D(volume_texture, texUV);
float4 result = tex1D(transfer_function, index);
return result;

}

Quality: Pre- vs. Post-Classification

Comparison of image quality

Post-ClassificationPre-Classification

Same TF, same Resolution, same Sampling Rate

Pre-Classification Post-Classification

Quality

Post-interpolative TF

Classified data

SupersamplingTransfer Function

Supersampling

Transfer Function

Analytical Solution Pre-interpolative TF

Transfer Function

Continuous data Discrete data

Scalar value

al
ph

a
va

lu
e

Pre- vs Post-Classification

3/29/2016

18

SupersamplingTransfer Function

Transfer Function

Supersampling

Analytical Solution Post-interpolative TF

Pre-Integrated
Transfer Function

Pre-Integrated TF

Continuous data Discrete data

Scalar value

al
ph

a
va

lu
e

Post- vs Pre-Integrated Classification

Classified data

Screen

Slab

Eye
sf

sb

Classification Artifacts / Pre-integration

pre-integrate all possible
combinations in the TF

Pre-Integrated Classification

sf sb
store integral

into table

sf

sb

d

front
slice

back
slice

Assume constant
sampling distance d

sbsf

Classification Artifacts / Pre-integration
struct v2f_simple {

float4 Hposition : POSITION;
float3 TexCoord0 : TEXCOORD0;
float3 TexCoord1 : TEXCOORD1;

float4 Color0 : COLOR0;
};

float4 main(v2f_simple IN,
uniform sampler3D Volume,
uniform sampler2D TransferFunction,
uniform sampler2D PreIntegrationTable) : COLOR

{
float4 lookup;
//sample front scalar
lookup.x = tex3D(Volume, IN.TexCoord0.xyz).x;
//sample back scalar
lookup.y = tex3D(Volume, IN.TexCoord1.xyz).x;

//lookup and return pre-integrated value
return tex2D(PreIntegrationTable, lookup.yx);

}

Cg Fragment Program

Pre-Integrated Classification

Fast re-computation of the pre-integration table
when transfer function changes

Use Integral functions

Hardware-Accelerated Computation: Roettger, Ertl. A Two-Step
Approach for Interactive Pre-Integrated Volume Rendering of
Unstructured Grids. In Proc. VolVis '02



sf sb0



sf sb0

- =

Pre-Integrated Classification

3/29/2016

19

When to use which Classification

Pre-Interpolative Classification
If the graphics hardware does not support fragment
shaders
For simple segmented volume data visualization

Post-Interpolative Classification
If the transfer function is “smooth”
For good quality and good performance
(especially when slicing)

Pre-Integrated Classification
If the transfer function contains high frequencies
For best quality

