























### **Mipmapped Textures**

- *Mipmapping* allows for prefiltered texture maps of decreasing resolutions
- Lessens interpolation errors for smaller textured objects
- Declare mipmap level during texture definition glTexImage2D( GL\_TEXTURE\_\*D, level, ...
- GLU mipmap builder routines will build all the textures from a given image gluBuild\*DMipmaps( ... )











### Light Mapping

 In order to keep the texture and light maps separate, we need to be able to perform multitexturing – application of multiple textures in a single rendering pass



### Light Mapping

- How do you create light maps?
- Trying to create a light map that will be used on a non-planar object things get complex fast:
  - Need to find a divide object into triangles with similar orientations
  - These similarly oriented triangles can all be mapped with a single light map

# Light Mapping

- Things for standard games are usually much easier since the objects being light mapped are usually planar:
  - Walls
  - Ceilings
  - Boxes
  - Tables
- Thus, the entire planar object can be mapped with a single texture map

### Light Mapping



### Light Mapping

- Can dynamic lighting be simulated by using a light map?
- If the light is moving (perhaps attached to the viewer or a projectile) then the lighting will change on the surface as the light moves
  - Moving 'flashlight' (use texture matrix)
  - The light map values can be partially updated dynamically as the program runs
  - Several light maps at different levels of intensity could be pre-computed and selected depending on the light's distance from the surface



# Lightmaps

• Adding local light to scene





### Lightmaps

#### • Cached Lighting Results

- Reuse lighting calculations
  - Multiple local lights (same type)
  - Static portion of scene's light field
  - Sample region with texture instead of tessellating

#### - Low resolution sampling

- Local lighting; rapid change over small area
- Global lighting; slow change over large area

# Lightmaps

- Segmenting Scene Lighting
  - Static vs. dynamic light fields
  - Global vs. local lighting
  - Similar light shape

### Lightmaps

• Segmenting the lighting





Dominant Lighting

Local lighting

### Lightmaps

#### Moving Local Lights

- Recreate the texture; simple but slow
- Manipulate the lightmap
  - Translate to move relative to the surface
  - Scale to change spot size
  - Change base polygon color to adjust intensity
- Projective textures ideal for spotlights
- 3D textures easy to use (if available)

### Spotlights as Lightmap **Special Case** • Mapping Single Spotlight Texture Pattern



### Lightmaps

- Creating a lightmap
  - Light white, tesselated surface with local light
  - Render, capture image as texture
  - Texture contains ambient and diffuse lighting
  - glLight() parameters should match light
  - Texture can also be computed analytically

### Lightmaps

• Creating a lightmap





### Lightmaps

- Lighting with a Lightmap
  - Local light is affected by surface color and texture
  - Two step process adds local light contribution:
    - Modulate textured, unlit surfaces with lightmap
    - Add locally lit image to scene
  - Can mix OpenGL, lightmap lighting in same scene





.ighting

Combined Image



### Packing Many Lightmaps into a Single Texture • Quake 2 light map texture image example

- Lightmap heavily m



- Lightmaps typically heavily magnified.
- Permits multiple lightmaps packed into a single texture.
- Quake 2 computes lightmaps via off-line radiosity solver.

### Lightmaps

- Lightmap considerations
  - Lightmaps are good:
    - Under-tessellated surfaces
    - Custom lighting
    - Multiple identical lights
    - Static scene lighting

# Lightmaps

- Lightmap considerations
  - Lightmaps less helpful:
    - Highly tessellated surfaces
    - Directional lights
    - Combine with other surface effects (e.g. bumpmapping)
      - eats a texture unit/access in fragment programs
      - may need to go to multi-pass rendering (fill-bound app)

### Multitexturing

- Multitexturing allows the use of multiple textures at one time.
- It is a standard feature of OpenGL 1.3 and later.
- An ordinary texture combines the base color of a polygon with color from the texture image. In multitexturing, this result of the first texturing can be combined with color from another texture.
- Each texture can be applied with different texture coordinates.



### **Texture Units**

- A texture unit is a part of the rendering pipeline that applies one texture to whatever is being drawn.
- Each unit has a texture, a texture environment, and optional texgen mode. That is, its own complete and independent OpenGL texture state



### **Texture Units**

- Texture units are named GL\_TEXTURE0, GL\_TEXTURE1, etc.
- The unit names are used with two new functions.
- glActiveTexture(texture\_unit) selects the current unit to be affected by texture calls (such as glBindTexture, glTexEnv, glTexGen).
- glMultiTexCoord2f(texture\_unit, s, t) Sets texture coordinates for one unit

#### **OpenGL Multitexture Quick Tutorial**

- undate state of active texture unit
- Setting texture coordinates for a vertex: glMultiTexCoord4f(GL\_TEXTURE0, s0, t0, r0, q0); glMultiTexCoord2f(GL\_TEXTURE1, s1, t1); glMultiTexCoord3f(GL\_TEXTURE2, s2, t2, r2); glVertex3f(x, y, z);





### **OpenGL Multitexture Texture** Environments (new way)

 Chain of Texture Environment Stages: put it in the shaders! ing vec3 lightDir, normal main(){ mam(){ gl\_TexCoord[0] = gl\_TextureMatrix[0] \* gl\_MultiTexCoord0 gl\_TexCoord[1] = gl\_TextureMatrix[1] \* gl\_MultiTexCoord1 gl\_Position = ftransform(); ng vec3 lightDir, normal; rm sampler2D tex0, tex1; main(){ vec3 ct, cf; vec4 texel; float intensity, Noat intensity, at, af; intensity = max(dot(lightDir, normalize(normali)).0.0); ci = intensity \* 10; FrontMaterial.dffuse.rgb + gl\_FrontMaterial.ambient.rgb; af = gl\_FrontMaterial.dffuse.a texel = texture2D(tex0.gl\_TexCoord(0).st) + texture2D(tex0.gl\_TexCoord(1).st); ct = texel.rgb; ragColor = vec4(ct\*cf, at\*af)









### Alpha Mapping

- In the previous tree example, all the trees are texture mapped onto flat polygons
- The illusion breaks down if the viewer sees the tree from the side
- Thus, this technique is usually used with another technique called "billboarding"

   Simply automatically rotating the polygon so it always
- faces the viewer
  Note that if the alpha map is used to provide transparency for texture map colors, one can often combine the 4 pieces of information (R,G,B,A) into a

single texture map

# Alpha Mapping

- The only issue as far as the rendering pipeline is concerned is that the pixels of the object made transparent by the alpha map cannot change the value in the z-buffer
  - We saw similar issues when talking about whole objects that were partially transparent → render them last with the z-buffer in read-only mode
  - However, alpha mapping requires changing zbuffer modes *per pixel* based on texel information
     This implies that we need some simple hardware
  - This implies that we need some simple hardware support to make this happen properly















# Billboards Hack 2

- Trees don't face camera
- Use the ModelviewMake billboard
- cylindricalSet part of rotation to identity







# **Billboards Correct**

- Trees face camera
- Need
  - Object in world coords
  - Target position (camera) in world coords
- Assume for the object (billboard)
   Right = [1,0,0]
   Up = [0,1,0]
  - $LookAt = [0,0,1] \{which is the normal\}$



# Billboards Correct

#### objToCamProj is the projection to the XZ plane (set y=0)

- 1. Normalize objToCamProj
- 2. aux=LookAt dot objToCamProj
- 3. Up'= lookAt X objToCamProj
- 4. glRotate(acos(aux), Up'[0], Up'[1], Up'[2]

| void billboerdCylindricelBegin(<br>floet canX, floet canY, floet canY, floet canZ,<br>floet canX, floet calYorX, floet cbyForZ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Billboards Correct                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| flost lookk[3],ebjTcCamFroj[3],upAux[3];<br>flost modelviev[16],angleCosine;<br>glPushMatrix();                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       |
| <pre>// objToCamFroj is the vector in world coordinates from the<br/>// losi origin to the cammera projected in the XI plane<br/>objToCamFroj[0] = oax - objFosX ;<br/>objToCamFroj[1] = 0;<br/>objToCamFroj[1] = camI - objFosI ;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | objToCamProj is the projection                                                        |
| <pre>// This is the original lookAt vector for the object<br/>// in world coordinates<br/>lookAt(1) = 0;<br/>lookAt(1) = 0;<br/>lookAt(1) = 1;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. Normalize objToCamProj 2. aux=LookAt dot objToCamProj Utel LookAt dot objToCamProj |
| <pre>// normalize both vectors to get the cosine directly afterwards<br/>matheMormalize(objToCamProj);<br/>//</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3. UP = 100kAt X 00j10CamProj<br>4. glRotate(acos(aux), Up'[0], Up'[1], Up'[2]        |
| <pre>// for positive angles uplux will be a vector pointing in the<br/>// positive y direction, otherwise uplus will point downwards<br/>// effectively reversing the rotation.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |
| mathsCrossFroduct(upAux,lookAt,objToCamProj);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | up                                                                                    |
| <pre>// compute the angle     angleComine = mathsInnerProduct(lookAt,objToCamProj);</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not cathocan                                                                          |
| <pre>// perform the rotation. The if statement is used for stability reasons<br/>// if the lockt and objoince/projectors are too close together then<br/>// angleCosins  could be bigger than 1 must to list of precision<br/>ightCosing(cosing) could be lock of the statement of the statement<br/>generates (socience) closes in the statement of the statement of the statement<br/>of the state (socience) closes in the statement of the statement of the statement<br/>of the state (socience) closes in the statement of the statem</pre> | abticcarring = based                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       |



# **Billboards Correct**

Object Position in world space objPosWC = camPos + (M1<sup>-1</sup>) \* V



M1



