
1

1

Shadows

Thanks to:

Frédo Durand
and Seth Teller
MIT

Shadows

• Realism

• Depth cue

3

Shadows as depth cue

4

Spatial relationship between objects

Michael McCool
Univ of Waterloo

5

Spatial relationship between objects

Michael McCool
Univ of Waterloo 6

Spatial relationship between objects

Michael McCool
Univ of Waterloo

2

7

Spatial relationship between objects

Michael McCool
Univ of Waterloo 8

Spatial relationship between objects

Michael McCool
Univ of Waterloo

9

Shadows and art

• Only in Western pictures (here Caravaggio)

10

Shadows and art

• Shadows as the origin
of painting

• People painted by
tracing the shadows
onto the canvas/wall

11

Duality shadow-view

• A point is lit if it is
visible from the
light source

• Shadow
computation very
similar to view
computation

12

Shadow ray

• Ray from visible point to light source

• If blocked, discard light contribution

• One shadow ray per light

• Optimization?
– Stop after first intersection

(don’t worry about tmin)

– Test latest obstacle first

3

13

Ray-casting shadows

14

Local vs. Global Illumination

• Core OpenGL uses local illumination model
– Light sources used: distant, point, spot

– Pros:
• Fast calculation of pixel color using Phong, only needs

– Position & direction of light source

– Material properties (diffuse, specular, ambient coeff)

– Light settings (intensity, fall-off, color)

– …but no info about other objects in the scene !

• Each primitive can be processed independently of others

– Cons:
• Good looking images need global effects

– Reflected light (e.g. environment mapping)

– Shadows

15

Global: Shadows

• A point is in shadow if the light got blocked
between the light source and point

Light Source

Viewer

Point is in shadow

Occluder

Point is lit

• Need mask that contains information about
blocked / non blocked pixels

16

Fake methods

• Still (not so) commonly used in games

• Shadows are simple, hand-drawn polygons

• No global effect
…but better than no shadow at all

Images from TombRaider. ©Eidos Interactive.

17

Shadow Quality: “Blobs”

18

Overview

• Projected Shadows

• Shadow map
– Image-precision, texture mapping

• Shadow volume
– Object space

• Soft shadows

4

19

Planar Projection

• Render a ground-plane

• Render an object

• Then render the object again, but this time
– Projected onto the plane

– Without light, so that the shadow is black

– Half transparent (using blending), to avoid
completely dark shadows

– Avoid multiple “darkening” on one spot by using
ordinary z-buffer checks

20

Projected Geometry

• [Blinn88] Me and my fake shadow
– Shadows for selected large receiver polygons

• Ground plane

• Walls

21

Projected Geometry

• Example: xz plane at y=0

yy

yzzy
z

yy

yxxy
x

vl

vlvl
p

vl

vlvl
p

22

Projected Geometry

• Transformation as 4 by 4 matrix

1010

00

0000

00

z

y

x

y

yz

xy

v

v

v

l

ll

ll

p

23

Projected Geometry

• General case: receiver polygon in plane E

• 4x4 matrix

)(

0:

lv
lvn

lnd
lp

dxnE

24

Projected Geometry

• Basic algorithm
– Render scene (full lighting)

– For each receiver polygon
• Compute projection matrix M

• Mult with actual transformation (modelview)

• Render selected (occluder) geometry
– Darken/Black

5

25

Planar Shadows

Shadow is projected into the plane of the floor.
26

Constructing a Shadow Matrix

groundplane = Nx Ny Nz D

void shadowMatrix(GLfloat shadowMat[4][4], GLfloat groundplane[4], GLfloat lightpos[4])
{
GLfloat dot;
/* Find dot product between light position vector and ground plane normal. */
dot = groundplane[X] * lightpos[X] + groundplane[Y] * lightpos[Y] +

groundplane[Z] * lightpos[Z] + groundplane[W] * lightpos[W];

shadowMat[0][0] = dot - lightpos[X] * groundplane[X];
shadowMat[1][0] = 0.f - lightpos[X] * groundplane[Y];
shadowMat[2][0] = 0.f - lightpos[X] * groundplane[Z];
shadowMat[3][0] = 0.f - lightpos[X] * groundplane[D];
shadowMat[0][1] = 0.f - lightpos[Y] * groundplane[X];
shadowMat[1][1] = dot - lightpos[Y] * groundplane[Y];
shadowMat[2][1] = 0.f - lightpos[Y] * groundplane[Z];
shadowMat[3][1] = 0.f - lightpos[Y] * groundplane[D];
shadowMat[0][2] = 0.f - lightpos[Z] * groundplane[X];
shadowMat[1][2] = 0.f - lightpos[Z] * groundplane[Y];
shadowMat[2][2] = dot - lightpos[Z] * groundplane[Z];
shadowMat[3][2] = 0.f - lightpos[Z] * groundplane[D];
shadowMat[0][3] = 0.f - lightpos[W] * groundplane[X];
shadowMat[1][3] = 0.f - lightpos[W] * groundplane[Y];
shadowMat[2][3] = 0.f - lightpos[W] * groundplane[Z];
shadowMat[3][3] = dot - lightpos[W] * groundplane[D];

}

27

How to add shadows ?

• Can be done in two ways:
– 1st method: Full illumination + darkening

FB = DiffuseTex0 * (Light0 + Light1 + Light2…)
if pixel is in shadow (with respect to Light0)
FB = FB * 0.5

This is wrong since the contribution of Light1,2 etc.
is also affected !

28

How to add shadows ?

– 2nd & correct method: Use mask for each light

FB = DiffuseTex0 * (Light0 * Mask0 + Light1 * Mask1 +
Light2 * Mask2…)

Mask values
• 0 if pixel is in shadow (with respect to Light X)

• 1 if pixel is lit by Light X

• 0…1 for pixels on shadow edge (soft shadow edge)

Accumulation of (Light0 * Mask0) + … can be done
using additive blending

29

How to add shadows ?

• Algorithm
– Render scene with ambient illumination only

– For each light source
• Render scene with illumination from this light only

• Scale illumination by shadow mask

• Add up contribution to frame buffer

• Expensive but nearly correct !

• Speed-Up
– Use more lights & masks in one pass

• Masks stored as textures

• Apply masks & sum up using fragment shaders

30

How to Render the Shadow

// Render 50% black shadow color on top of whatever
// the floor appearance is. glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_LIGHTING); /* Force the 50% black. */
glColor4f(0.0, 0.0, 0.0, 0.5);

PushMatrix(ModelView); // save the state of the modelview matrix

// Project the shadow by pre-multiplying by the shadow matrix
lMultMatrixf((GLfloat *) floorShadow, ModelView);
drawDinosaur();
PopMatrix(ModelView); // restore the modelview matrix

6

31

Not Quite So Easy (1)

Without stencil to avoid double blending
of the shadow pixels:

Notice darks spots
on the planar shadow.

Solution: Clear stencil to zero. Draw floor with stencil
of one. Draw shadow if stencil is one. If shadow’s
stencil test passes, set stencil to two. No double blending.

32

Not Quite So Easy (2)

There’s still another problem even if using
stencil to avoid double blending.

depth buffer Z
fighting artifacts

Shadow fights with depth values from the
floor plane. Use polygon offset to raise shadow
polygons slightly in Z.

33

Not Quite so Easy (3)

Good. Bad.
Notice right image’s reflection falls off the floor!

Same problem with Shadows! 34

Planar Projection

• Fast
– Can be done with a matrix operation

• Easy
– Just use the Modelview transform

• Very unrealistic
– Just planar shadows

35

Projected Geometry

• Problems
– Z-Fighting

• Use bias when rendering shadow polygons

• Use stencil buffer (no depth test)

– Bounded receiver polygon ?
• Use stencil buffer (restrict drawing to receiver area)

– Shadow polygon overlap ?
• Use stencil count (only the first pixel gets through)

36

Fake shadows using textures

• Separate occluder and receiver

• Compute b/w image of obstacle from light

• Use projective textures

Image from light source BW image of obstacle Final image
Figure from Moller & haines “Real Time Rendering”

7

37

Fake shadows using textures

• Limitations?

Image from light source BW image of obstacle Final image
Figure from Moller & haines “Real Time Rendering”

38

Introducing Another Technique: Shadow Mapping

• Image-space shadow determination
– Lance Williams published the basic idea in 1978

• By coincidence, same year Jim Blinn invented bump mapping
(a great vintage year for graphics)

– Completely image-space algorithm

• means no knowledge of scene’s geometry is required

• must deal with aliasing artifacts

– Well known software rendering technique

• Pixar’s RenderMan uses the algorithm

• Basic shadowing technique for Toy Story, etc.

39

Shadow Mapping References

• Important SIGGRAPH papers
– Lance Williams, “Casting Curved Shadows on

Curved Surfaces,” SIGGRAPH 78

– William Reeves, David Salesin, and Robert
Cook (Pixar), “Rendering antialiased shadows
with depth maps,” SIGGRAPH 87

– Mark Segal, et. al. (SGI), “Fast Shadows and
Lighting Effects Using Texture Mapping,”
SIGGRAPH 92

40

The Shadow Mapping Concept (1)

• Depth testing from the light’s point-of-view
– Two pass algorithm

– First, render depth buffer from the light’s point-
of-view

• the result is a “depth map” or “shadow map”

• essentially a 2D function indicating the depth of
the closest pixels to the light

– This depth map is used in the second pass

41

The Shadow Mapping Concept (2)

• Shadow determination with the depth map
– Second, render scene from the eye’s point-of-view

– For each rasterized fragment
• determine fragment’s XYZ position relative to the light

• this light position should be setup to match the frustum
used to create the depth map

• compare the depth value at light position XY in the depth
map to fragment’s light position Z

42

The Shadow Mapping Concept (3)

• The Shadow Map Comparison
– Two values

• A = Z value of fragment’s XYZ light position

• B = Z value from depth map at fragment’s light XY
position

• A = Z value of fragment’s XYZ light position

– If A is less than B, then there must be
something closer to the light than the fragment

• then the fragment is shadowed

– If A and B are approximately equal, the
fragment is lit

8

43

Shadow maps

• Use texture mapping but using depth
• 2 passes (at least)

– Compute shadow
map from light source

• Store depth buffer
(shadow map)

– Compute final image
• Look up the

shadow map to
know if points
are in shadow

Figure from Foley et al. “Computer Graphics Principles and Practice”
44

Shadow map look up

• We have a 3D point
x,y,z

• How do we look up
the shadow map?

Figure from Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)

45

Shadow map look up

• We have a 3D point
x,y,z

• How do we look up the
shadow map?

• Use the 4x4 camera
matrix from the light
source

• We get (x’,y’,z’)

• Test:
ShadowMap(x’,y’)<z’

Figure from Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)(x’,y’,z’)

46

Shadow map look up

• We have a 3D point
x,y,z

• How do we look up the
shadow map?

• Use the 4x4 camera
matrix from the light
source

• We get (x’,y’,z’)

• Test:
ShadowMap(x’,y’)<z’

Figure from Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)(x’,y’,z’)

47

Shadow maps

• Can be done in hardware
• Using hardware texture mapping

– Texture coordinates u,v,w generated using 4x4 matrix

– Modern hardware permits tests on texture values

48

Shadow Mapping with a Picture in 2D (1)

light
source

eye
position

depth map Z = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer

The A < B shadowed fragment case

9

49

Shadow Mapping with a Picture in 2D (2)

light
source

eye
position

depth map Z = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer

The A B unshadowed fragment caseThe A B unshadowed fragment case

50

Note image precision mismatch!Note image precision mismatch!

The depth map
could be at a
different resolution
from the framebuffer

This mismatch can
lead to artifacts

Shadow Mapping with a Picture in 2D (3)

51

Visualizing the Shadow
Mapping Technique (1)

• A fairly complex scene with shadows

the point
light source

52

Visualizing the Shadow
Mapping Technique (2)

• Compare with and without shadows

with shadows without shadows

53

Visualizing the Shadow
Mapping Technique (3)

• The scene from the light’s point-of-view

FYI: from the
eye’s point-of-view
again

54

Visualizing the Shadow
Mapping Technique (4)

• The depth buffer from the light’s point-of-view

FYI: from the
light’s point-of-view
again

10

55

Visualizing the Shadow
Mapping Technique (5)

• Projecting the depth map onto the eye’s view

FYI: depth map for
light’s point-of-view
again

56

Visualizing the Shadow
Mapping Technique (6)

• Projecting light’s planar distance onto eye’s view

57

Visualizing the Shadow
Mapping Technique (6)

• Comparing light distance to light depth map

Green is
where the

light planar
distance and

the light
depth map

are
approximatel

y equal

Non-green is
where
shadows
should be

58

Visualizing the Shadow
Mapping Technique (7)

• Scene with shadows

Notice how
specular

highlights
never appear

in shadows

Notice how
curved
surfaces cast
shadows on
each other

59

Shadow Quality: Shadow Maps

60

Problems with shadow maps?

• Field of view

• Bias

• Aliasing

11

61

Field of view problem

• What if point to
shadow is outside
field of view of
shadow map?

• Use cubical shadow
map

• Use only spot lights!

62

Problems with shadow maps?

• Field of view

• Bias

• Aliasing

63

The bias nightmare

• For a point visible
from the light source

ShadowMap(x’,y’)z’

• Avoid erroneous self
shadowing

64

The bias nightmare

hit
hit+epsilon*light

• Shadow ray
casting
– Start the ray at

hit+light*epsilon

– Add bias to avoid
degeneracy

– Yet another instance
of geometric
robustness

65

Bias for shadow maps

ShadowMap(x’,y’)+bias < z’

Choosing the good bias value can be very tricky

66

Construct Light View Depth Map

• Realizing the theory in practice
– Constructing the depth map

• use existing hardware depth buffer

• use glPolygonOffset to bias depth value

• read back the depth buffer contents (bind to a texture)

– Depth map used as a 2D texture

12

67

Justification for glPolygonOffset
When Constructing Shadow Maps

• Depth buffer contains “window space” depth
values
– Post-perspective divide means non-linear distribution

– glPolygonOffset is guaranteed to be a window space
offset

• Doing a “clip space” translate is not sufficient
– Common shadow mapping implementation mistake

– Actual bias in depth buffer units will vary over the
frustum

– No way to account for slope of polygon

68

Sampling a Polygon’s Depth at
Pixel Centers (1)

• Consider a polygon covering pixels in 2D

X

Z

Pixel centers

Polygon

69

Sampling a Polygon’s Depth
at Pixel Centers (2)

X

Z

• Consider a 2nd grid for the polygon covering
pixels in 2D

70

Sampling a Polygon’s Depth
at Pixel Centers (3)

• How Z changes with respect to X

X

Z

z/x

71

Why You Need
glPolygonOffset’s Slope

• Say pixel center is re-sampled to another grid
– For example, the shadow map texture’s grid!

• The re-sampled depth could be off by
+/-0.5 z/x and +/-0.5 z/y

• The maximum absolute error would be
| 0.5 z/x | + | 0.5 z/y | max(| z/x | , | z/y |)

– This assumes the two grids have pixel footprint area ratios of 1.0

– Otherwise, we might need to scale by the ratio

• Exactly what polygon offset’s “slope” depth bias does

72

Depth Map Bias Issues

• How much polygon offset bias depends

Too little bias,
everything begins to
shadow

Too much bias, shadow
starts too far back

Just right

13

73

Selecting the Depth Map Bias

• Not that hard
– Usually the following works well

• glPolygonOffset(scale = 1.1, bias = 4.0)

– Usually better to error on the side of too much bias
• adjust to suit the shadow issues in your scene

– Depends somewhat on shadow map precision
• more precision requires less of a bias

– When the shadow map is being magnified, a larger
scale is often required

74

Problems with shadow maps?

• Field of view

• Bias

• Aliasing

75

Shadow map aliasing

• Undersampling of shadow map

• Reprojection aliasing

76

Alaising

• Finite shadow map
resolution

• Result: pixelized
shadows

77

Shadow maps

• In Renderman
– (High-end production software)

78

Shadow map filtering (PCF)

• Does not work!

• Filtering depth (tri-linear) is not meaningful

14

79

Percentage closer filtering

• Filter the result of the test

• But makes the bias issue more tricky

80

Percentage closer filtering

• 5x5 samples

• Nice antialiased
shadow

• Using a bigger
filter produces fake
soft shadows

• But makes the bias
issue more tricky

81

Shadows in production

• Often use shadow
maps

• Ray casting as
fallback in case of
robustness issues

82

Movie Time!

83

Alaising

• Bad aliasing cases:
– Large Scenes

• High resolution shadow map required

– Close-ups to shadow boundaries
• Zoom in

– Shadow stretches along the receiver

84

Aliasing

• Duelling frusta
– Light shines opposite to viewing direction

15

85

Aliasing

• Duelling frusta
– Resolution mismatch

86

Aliasing

• Miner’s headlamp
– Similar frusta

– Similar sampling

– One shadowmap pixel for image pixel

87

Pros and Cons

+ general
– everything that can be rendered can cast and receive a shadow

– works together with shader programs

+ fast
– full hardware support

– (almost) no overhead for static scenes

– two passes needed for dynamic scenes

+ robust

+ easy to implement

- aliasing

88

OpenGL Shadow Mapping

• Switch to other PPT slides

89

Questions?

