
1

Shadow Mapping
in OpenGL

Shadow Mapping
in OpenGL

2

What is
Projective Texturing?

• An intuition for projective texturing

• The slide projector analogy

Source: Wolfgang Heidrich [99]Source: Wolfgang Heidrich [99]

3

About
Projective Texturing (1)

• First, what is perspective-correct texturing?

• Normal 2D texture mapping uses (s, t) coordinates

• 2D perspective-correct texture mapping

• means (s, t) should be interpolated linearly in eye-
space

• so compute per-vertex s/w, t/w, and 1/w

• linearly interpolate these three parameters over
polygon

• per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) /
(1/w)

• results in per-fragment perspective correct (s’, t’)

4

About
Projective Texturing (2)

• So what is projective texturing?

• Now consider homogeneous texture coordinates

• (s, t, r, q) --> (s/q, t/q, r/q)

• Similar to homogeneous clip coordinates where
(x, y, z, w) = (x/w, y/w, z/w)

• Idea is to have (s/q, t/q, r/q) be projected per-
fragment

• This requires a per-fragment divider

• yikes, dividers in hardware are fairly expensive

5

About
Projective Texturing (3)

• Hardware designer’s view of texturing

• Perspective-correct texturing is a practical
requirement

• otherwise, textures “swim”

• perspective-correct texturing already requires
the hardware expense of a per-fragment divider

• Clever idea [Segal, et al. ‘92]

• interpolate q/w instead of simply 1/w

• so projective texturing is practically free if you
already do perspective-correct texturing!

6

About
Projective Texturing (4)

• Tricking hardware into doing projective textures

• By interpolating q/w, hardware computes per-
fragment

• (s/w) / (q/w) = s/q

• (t/w) / (q/w) = t/q

• Net result: projective texturing

• OpenGL specifies projective texturing

• only overhead is multiplying 1/w by q

• but this is per-vertex

2

7

Back to the Shadow
Mapping Discussion . . . Fixed Function

• Assign light-space texture coordinates via texgen
• Transform eye-space (x, y, z, w) coordinates to

the light’s view frustum (match how the light’s
depth map is generated)

• Further transform these coordinates to map
directly into the light view’s depth map

• Expressible as a projective transform
• load this transform into the 4 eye linear plane

equations for S, T, and Q coordinates

• (s/q, t/q) will map to light’s depth map texture

8

Back to the Shadow
Mapping Discussion . . . Fixed Function

• Assign light-space texture coordinates via texgen
• Transform eye-space (x, y, z, w) coordinates to

the light’s view frustum (match how the light’s
depth map is generated)

• Further transform these coordinates to map
directly into the light view’s depth map

• Expressible as a projective transform
• load this transform into the 4 eye linear plane

equations for S, T, and Q coordinates

• (s/q, t/q) will map to light’s depth map texture

9

Tricks

10

Tricks

11

Tricks

12

Tricks

3

13

Tricks

14

Tricks

15

Tricks

Need to scale/bias too!

16

Shadow Map Eye Linear
Texgen Transform (Fixed Function)
Shadow Map Eye Linear
Texgen Transform (Fixed Function)

1/21/2

1/21/2

1/21/2

11

1/21/2

1/21/2

1/21/2
LightLight

frustumfrustum
(projection)(projection)

matrixmatrix

LightLight
viewview

(look at)(look at)
matrixmatrix

InverseInverse
eyeeye
viewview

(look at)(look at)
matrixmatrix

EyeEye
viewview

(look at)(look at)
matrixmatrix

ModelingModeling
matrixmatrix

xxoo

yyoo

zzoo

wwoo

xxee

yyee

zzee

wwee

==

==

xxee

yyee

zzee

wwee

ss
tt
rr
qq

glTexGenglTexGen automatically automatically
applies this when applies this when
modelview matrix modelview matrix

contains just the eye view contains just the eye view
transformtransform

Supply this combined transform to Supply this combined transform to glTexGenglTexGen

17

Setting Up
Eye Linear Texgen (Fixed Function)

• With OpenGL
GLfloat Splane[4], Tplane[4], Rplane[4], Qplane[4];
glTexGenfv(GL_S, GL_EYE_PLANE, Splane);
glTexGenfv(GL_T, GL_EYE_PLANE, Tplane);
glTexGenfv(GL_R, GL_EYE_PLANE, Rplane);
glTexGenfv(GL_Q, GL_EYE_PLANE, Qplane);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

• Each eye plane equation is transformed by current inverse
modelview matrix

• Very handy thing for us; otherwise, a pitfall
• Note: texgen object planes are not transformed

by the inverse modelview (MISTAKE IN REDBOOK!)

18

Eye Linear
Texgen Transform (Fixed Function)

• Plane equations form a projective transform

• The 4 eye linear plane equations form a 4x4
matrix

• No need for the texture matrix!

ss
tt
rr
qq

Splane[0] Splane[1] Splane[2] Splane[3]Splane[0] Splane[1] Splane[2] Splane[3]

Tplane[0] Tplane[1] Tplane[2] Tplane[3]Tplane[0] Tplane[1] Tplane[2] Tplane[3]

Rplane[0] Rplane[1] Rplane[2] Rplane[3]Rplane[0] Rplane[1] Rplane[2] Rplane[3]

Qplane[0] Qplane[1] Qplane[2] Qplane[3]Qplane[0] Qplane[1] Qplane[2] Qplane[3]

==

xxee

yyee

zzee

wwee

4

19

Tricks

Still Need to scale/bias!

20

Shadow Map
Operation

• Automatic depth map lookups

• After the eye linear texgen with the proper transform
loaded

• (s/q, t/q) is the fragment’s corresponding location
within the light’s depth texture

• r/q is the Z planar distance of the fragment
relative to the light’s frustum, scaled and biased
to [0,1] range

• Next compare texture value at (s/q, t/q) to value r/q

• if texture[s/q, t/q] r/q then not shadowed

• if texture[s/q, t/q] < r/q then shadowed

21

shadow Filtering Mode

• Performs the shadow test as a texture filtering operation

• Looks up texel at (s/q, t/q) in a 2D texture

• Compares lookup value to r/q

• If texel is greater than or equal to r/q, then
generate 1.0

• If texel is less than r/q, then generate 0.0
• Modulate color with result

• Zero if fragment is shadowed or unchanged
color if not

22

shadow API Usage

• Request shadow map filtering with glTexParameter calls

• glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_COMPARE_MODE,
GL_COMPARE_REF_TO_TEXTURE);

• Default is GL_NONE for normal filtering

• Only applies to depth textures

• Also select the comparison function

• Either GL_LEQUAL (default) or GL_GEQUAL

• glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);

23

New Depth Texture
Internal Texture Formats

• depth_texture supports textures containing depth values for shadow
mapping

• Three new internal formats

• GL_DEPTH_COMPONENT16

• GL_DEPTH_COMPONENT24

• GL_DEPTH_COMPONENT32
(same as 24-bit on GeForce3/4/Xbox)

• Hint: use GL_DEPTH_COMPONENT for your texture internal format

• Leaving off the “n” precision specifier tells the driver to
match your depth buffer’s precision

• Copy texture performance is optimum when depth buffer
precision matches the depth texture precision

24

Hardware Shadow
Map Filtering

• “Percentage Closer” filtering

• Normal texture filtering just averages color components

• Averaging depth values does NOT work

• Solution [Reeves, SIGGARPH 87]
• Hardware performs comparison for each sample
• Then, averages results of comparisons

• Provides anti-aliasing at shadow map edges
• Not soft shadows in the umbra/penumbra sense

5

25

Hardware Shadow Map
Filtering Example

GL_NEAREST: blockyGL_NEAREST: blocky GL_LINEAR: antialiased edgesGL_LINEAR: antialiased edges

Low shadow map resolutionLow shadow map resolution
used to heightens filtering artifactsused to heightens filtering artifacts

26

Mipmapping for Depth Textures with
Percentage Closer Filtering (1)

• Mipmap filtering works

• Averages the results of comparisons form the one or
two mipmap levels sampled

• You cannot use gluBuild2DMipmaps to construct depth
texture mipmaps

• because you cannot blend depth values!
• If you do want mipmaps, the best approach is re-rendering the

scene at each required resolution

• Usually too expensive to be practical for all mipmap
levels

• Mipmaps can make it harder to find an appropriate polygon
offset scale & bias that guarantee avoidance of self-shadowing

• You can get “8-tap” filtering by using (for example) two
mipmap levels, 512x512 and 256x256, and setting your min
and max LOD clamp to 0.5

27

Advice for Shadowed
Illumination Model (1)

• Typical illumination model with decal texture:
(ambient + diffuse) * decal + specular

The shadow map supplies a shadowing term

• Assume shadow map supplies a shadowing term, shade

• Percentage shadowed

• 100% = fully visible, 0% = fully shadowed

• Obvious updated illumination model for shadowing:
(ambient + shade * diffuse) * decal + shade * specular

• Problem is real-world lights don’t 100% block diffuse shading on
shadowed surfaces

• Light scatters; real-world lights are not ideal points

28

The Need for
Dimming Diffuse

No dimming; shadowed
regions have 0% diffuse
and 0% specular

With dimming; shadowed
regions have 40% diffuse
and 0% specular

Front facing shadowed
regions appear unnaturally flat.

Still evidence of curvature
in shadowed regions.

No specular
in shadowed
regions in
both versions.

29

Advice for Shadowed
Illumination Model (2)

• Illumination model with dimming:

(ambient + diffuseShade * diffuse) * decal + specular * shade

where diffuseShade is

diffuseShade = dimming + (1.0 – dimming) * shade

Easy to implement with fragment shaders
• Separate specular keeps the diffuse & specular lighting results

distinct
• Where does it matter?

30

Careful about
Back Projecting Shadow Maps (1)

• Just like standard projective textures, shadow
maps can back-project

Spotlight casting shadow
(a hooded light source)

Spotlight’s cone of illumination
where “true” shadows can form

Back-projection of
spotlight’s cone of illumination

Pentagon
would be
incorrectly
lit by back-
projection
if not specially
handled

6

31

Careful about
Back Projecting Shadow Maps (2)

• Techniques to eliminate back-projection:

• Modulate shadow map result with lighting result from a single
per-vertex spotlight with the proper cut off (ensures light is “off”
behind the spotlight)

• Use a small 1D texture where “s” is planar distance from the
light (generate “s” with a planar texgen mode), then 1D texture is
0.0 for negative distances and 1.0 for positive distances.

• Use a clip plane positioned at the plane defined by the light
position and spotlight direction

• Use the stencil buffer

• Simply avoid drawing geometry “behind” the light when applying
the shadow map (better than a clip plane)

• NV_texture_shader’s GL_PASS_THROUGH_NV mode

32

Other OpenGL Extensions for
Improving Shadow Mapping

• FBO – create off-screen rendering surfaces for rendering shadow map depth
buffers

• Normally, you can construct shadow maps in your back buffer and copy them
to texture

• But if the shadow map resolution is larger than your window resolution, use
pbuffers.

33

Combining Shadow Mapping
with other Techniques

• Good in combination with techniques

• Use stencil to tag pixels as inside or outside of shadow

• Use other rendering techniques in extra passes
• bump mapping
• texture decals, etc.

• Shadow mapping can be integrated into more complex multi-
pass rendering algorithms

• Shadow mapping algorithm does not require access to vertex-
level data

• Easy to mix with vertex programs and such

34

Combine with Projective Texturing
for Spotlight Shadows

• Use a spotlight-style projected texture to give
shadow maps a spotlight falloff

35

Simulate atmospheric effects suchSimulate atmospheric effects such
as suspended dustas suspended dust

1) Construct shadow map1) Construct shadow map

2)2) Draw scene with shadow mapDraw scene with shadow map

3)3) Modulate projected texture Modulate projected texture
imageimage
with projected shadow mapwith projected shadow map

4)4) Blend backBlend back--toto--front shadowedfront shadowed
slicing planes also modulatedslicing planes also modulated
by projected texture imageby projected texture image

• Shadows in a dusty room

Combining Shadows with
Atmospherics

36

Steps for Shadow Mapping (Fixed Function)

1. Create an empty depth texture

2. Set it up with an internal format of GL DEPTH COMPONENT

3. Set the texture parameters

4. Enable the depth buffer

7

37

Steps for Shadow Mapping (Fixed Function)

1. Create an empty depth texture

2. Set it up with an internal format of GL DEPTH COMPONENT

3. Set the texture parameters

4. Enable the depth buffer

5. Setup the light matrices

38

Steps for Shadow Mapping (Fixed Function)

1. Create an empty depth texture

2. Set it up with an internal format of GL DEPTH COMPONENT

3. Set the texture parameters

4. Enable the depth buffer

5. Setup the light matrices

6. Render scene from the light

39

Steps for Shadow Mapping (Fixed Function)

1. Create an empty depth texture

2. Set it up with an internal format of GL DEPTH COMPONENT

3. Set the texture parameters

4. Enable the depth buffer

5. Setup the light matrices

6. Render scene from the light

40

Steps for Shadow Mapping (Fixed Function)

1. Create an empty depth texture

2. Set it up with an internal format of GL DEPTH COMPONENT

3. Set the texture parameters

4. Enable the depth buffer

5. Setup the light matrices

6. Render scene from the light

41

Steps for Shadow Mapping (Fixed Function)

1. Create an empty depth texture

2. Set it up with an internal format of GL DEPTH COMPONENT

3. Set the texture parameters

4. Enable the depth buffer

5. Setup the light matrices

6. Render scene from the light

7. Setup matrices for shadowmapping

42

Steps for Shadow Mapping (Fixed Function)

1. Create an empty depth texture

2. Set it up with an internal format of GL DEPTH COMPONENT

3. Set the texture parameters

4. Enable the depth buffer

5. Setup the light matrices

6. Render scene from the light

7. Setup matrices for shadowmapping

8. Render the scene with shadowmapping shaders

8

43

Steps for Shadow Mapping (Fixed Function)

1. Create an empty depth texture

2. Set it up with an internal format of GL DEPTH COMPONENT

3. Set the texture parameters

4. Enable the depth buffer

5. Setup the light matrices

6. Render scene from the light

7. Setup matrices for shadowmapping

8. Render the scene with shadowmapping shaders

44

Whew!

