
1

Shadow Mapping
in OpenGL

2

Render Scene and
Access the Depth Texture

• Realizing the theory in practice

• Fragment’s light position can be generated using
eye-linear texture coordinate generation

• specifically OpenGL’s GL_EYE_LINEAR
texgen

• generate homogenous (s, t, r, q) texture
coordinates as light-space (x, y, z, w)

• T&L engines such as GeForce accelerate
texgen!

• relies on projective texturing

2

3

What is
Projective Texturing?

• An intuition for projective texturing

• The slide projector analogy

Source: Wolfgang Heidrich [99]Source: Wolfgang Heidrich [99]

4

About
Projective Texturing (1)

• First, what is perspective-correct texturing?

• Normal 2D texture mapping uses (s, t) coordinates

• 2D perspective-correct texture mapping

• means (s, t) should be interpolated linearly in eye-
space

• so compute per-vertex s/w, t/w, and 1/w

• linearly interpolate these three parameters over
polygon

• per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) /
(1/w)

• results in per-fragment perspective correct (s’, t’)

3

5

About
Projective Texturing (2)

• So what is projective texturing?

• Now consider homogeneous texture coordinates

• (s, t, r, q) --> (s/q, t/q, r/q)

• Similar to homogeneous clip coordinates where
(x, y, z, w) = (x/w, y/w, z/w)

• Idea is to have (s/q, t/q, r/q) be projected per-
fragment

• This requires a per-fragment divider

• yikes, dividers in hardware are fairly expensive

6

About
Projective Texturing (3)

• Hardware designer’s view of texturing

• Perspective-correct texturing is a practical
requirement

• otherwise, textures “swim”

• perspective-correct texturing already requires
the hardware expense of a per-fragment divider

• Clever idea [Segal, et.al. ‘92]

• interpolate q/w instead of simply 1/w

• so projective texturing is practically free if you
already do perspective-correct texturing!

4

7

About
Projective Texturing (4)

• Tricking hardware into doing projective textures

• By interpolating q/w, hardware computes per-
fragment

• (s/w) / (q/w) = s/q

• (t/w) / (q/w) = t/q

• Net result: projective texturing

• OpenGL specifies projective texturing

• only overhead is multiplying 1/w by q

• but this is per-vertex

8

Back to the Shadow
Mapping Discussion . . .

• Assign light-space texture coordinates via texgen
• Transform eye-space (x, y, z, w) coordinates to

the light’s view frustum (match how the light’s
depth map is generated)

• Further transform these coordinates to map
directly into the light view’s depth map

• Expressible as a projective transform
• load this transform into the 4 eye linear plane

equations for S, T, and Q coordinates

• (s/q, t/q) will map to light’s depth map texture

5

9

Tricks

10

Tricks

6

11

Tricks

12

Tricks

7

13

Tricks

14

Tricks

8

15

Tricks

Need to scale/bias too!

16

Shadow Map Eye Linear
Texgen Transform

1/21/2

1/21/2

1/21/2

11

1/21/2

1/21/2

1/21/2
LightLight

frustumfrustum
(projection)(projection)

matrixmatrix

LightLight
viewview

(look at)(look at)
matrixmatrix

InverseInverse
eyeeye
viewview

(look at)(look at)
matrixmatrix

EyeEye
viewview

(look at)(look at)
matrixmatrix

ModelingModeling
matrixmatrix

xxoo

yyoo

zzoo

wwoo

xxee

yyee

zzee

wwee

==

==

xxee

yyee

zzee

wwee

ss
tt
rr
qq

glTexGenglTexGen automatically automatically
applies this when applies this when
modelview matrix modelview matrix

contains just the eye view contains just the eye view
transformtransform

Supply this combined transform to Supply this combined transform to glTexGenglTexGen

9

17

Setting Up
Eye Linear Texgen

• With OpenGL
GLfloat Splane[4], Tplane[4], Rplane[4], Qplane[4];
glTexGenfv(GL_S, GL_EYE_PLANE, Splane);
glTexGenfv(GL_T, GL_EYE_PLANE, Tplane);
glTexGenfv(GL_R, GL_EYE_PLANE, Rplane);
glTexGenfv(GL_Q, GL_EYE_PLANE, Qplane);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

• Each eye plane equation is transformed by current inverse
modelview matrix

• Very handy thing for us; otherwise, a pitfall
• Note: texgen object planes are not transformed

by the inverse modelview (MISTAKE IN REDBOOK!)

18

Eye Linear
Texgen Transform

• Plane equations form a projective transform

• The 4 eye linear plane equations form a 4x4
matrix

• No need for the texture matrix!

ss
tt
rr
qq

Splane[0] Splane[1] Splane[2] Splane[3]Splane[0] Splane[1] Splane[2] Splane[3]

Tplane[0] Tplane[1] Tplane[2] Tplane[3]Tplane[0] Tplane[1] Tplane[2] Tplane[3]

Rplane[0] Rplane[1] Rplane[2] Rplane[3]Rplane[0] Rplane[1] Rplane[2] Rplane[3]

Qplane[0] Qplane[1] Qplane[2] Qplane[3]Qplane[0] Qplane[1] Qplane[2] Qplane[3]

==

xxee

yyee

zzee

wwee

10

19

Shadow Map
Operation

• Automatic depth map lookups

• After the eye linear texgen with the proper transform
loaded

• (s/q, t/q) is the fragment’s corresponding location
within the light’s depth texture

• r/q is the Z planar distance of the fragment
relative to the light’s frustum, scaled and biased
to [0,1] range

• Next compare texture value at (s/q, t/q) to value r/q

• if texture[s/q, t/q]  r/q then not shadowed

• if texture[s/q, t/q] < r/q then shadowed

20

Shadow Mapping Hardware Support (1)

• OpenGL now has official standard shadow mapping
extensions (in OpenGL 2.x)

• Approved February 2002!

• depth_texture – adds depth texture formats

• shadow – adds “percentage closer” filtering for depth
textures

• The two extensions are used together

• Based on prior proven SGI proprietary extensions

• SGIX_depth_texture

• SGIX_shadow

11

21

Shadow Mapping Hardware Support (2)

• SGIX_depth_texture & SGIX_shadow support

• SGI’s RealityEngine & InfiniteReality

• Brian Paul’s Mesa3D OpenGL work-alike

• NVIDIA’s GeForce3, GeForce4 Ti, and
Quadro 4 XGL

• Software emulation for GeForce1 & 2

• extensions now implemented

• Latest NVIDIA drivers and Mesa 4.0

22

shadow Filtering Mode

• Performs the shadow test as a texture filtering operation

• Looks up texel at (s/q, t/q) in a 2D texture

• Compares lookup value to r/q

• If texel is greater than or equal to r/q, then
generate 1.0

• If texel is less than r/q, then generate 0.0
• Modulate color with result

• Zero if fragment is shadowed or unchanged
color if not

12

23

shadow API Usage

• Request shadow map filtering with glTexParameter calls

• glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_COMPARE_MODE,
GL_COMPARE_R_TO_TEXTURE);

• Default is GL_NONE for normal filtering

• Only applies to depth textures

• Also select the comparison function

• Either GL_LEQUAL (default) or GL_GEQUAL

• glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);

24

New Depth Texture
Internal Texture Formats

• depth_texture supports textures containing depth values for
shadow mapping

• Three new internal formats

• GL_DEPTH_COMPONENT16

• GL_DEPTH_COMPONENT24

• GL_DEPTH_COMPONENT32
(same as 24-bit on GeForce3/4/Xbox)

• Use GL_DEPTH_COMPONENT for your external format
• Work with glCopySubTexImage2D for fast copies from depth

buffer to texture

• NVIDIA optimizes these copy texture paths

13

25

Depth Texture Details

• Usage example:
glCopyTexImage2D(GL_TEXTURE_2D, level=0,

internalfmt=GL_DEPTH_COMPONENT,
x=0, y=0, w=256, h=256, border=0);

• Then use glCopySubTexImage2D for faster updates once texture
internal format initially defined

• Hint: use GL_DEPTH_COMPONENT for your texture internal
format

• Leaving off the “n” precision specifier tells the driver to
match your depth buffer’s precision

• Copy texture performance is optimum when depth buffer
precision matches the depth texture precision

26

Depth Texture Copy Performance

• The more depth values you copy, the slower the performance

• 512x512 takes 4 times longer to copy than 256x256

• Tradeoff: better defined shadows require higher resolution
shadow maps, but slows copying

• 16-bit depth values copy twice as fast as 24-bit depth values
(which are contained in 32-bit words)

• Requesting a 16-bit depth buffer (even with 32-bit color
buffer) and copying to a 16-bit depth texture is faster than
using a 24-bit depth buffer

• Note that using 16-bit depth buffer usually
requires giving up stencil

14

27

Hardware Shadow
Map Filtering

• “Percentage Closer” filtering

• Normal texture filtering just averages color components

• Averaging depth values does NOT work

• Solution [Reeves, SIGGARPH 87]
• Hardware performs comparison for each sample
• Then, averages results of comparisons

• Provides anti-aliasing at shadow map edges
• Not soft shadows in the umbra/penumbra sense

28

Hardware Shadow Map
Filtering Example

GL_NEAREST: blockyGL_NEAREST: blocky GL_LINEAR: antialiased edgesGL_LINEAR: antialiased edges

Low shadow map resolutionLow shadow map resolution
used to heightens filtering artifactsused to heightens filtering artifacts

15

29

Depth Values are not Blend-able

• Traditional filtering is inappropriate

eye
position

What pixel covers in
shadow map texture

Texel sample
depth = 0.25

Texel sample
depth = 0.63

0.63

0.25 0.25

0.63

Average(0.25, 0.25, 0.63, 0.63) = 0.44
0.57 > 0.44 so pixel is wrongly “in shadow”
Truth: nothing is at 0.44, just 0.25 and 0.57

Pixel depth = 0.57

30

Percentage Closer Filtering

eye
position

What pixel covers in
shadow map texture

Texel sample
depth = 0.25

Texel sample
depth = 0.63

Shadowed Average(0.57>0.25, 0.57>0.25, 0.57<0.63, 0.57<0.63) = 50%
so pixel is reasonably 50% shadowed

(actually hardware does weighted average)

Pixel depth = 0.57

Unshadowed

• Average comparison results, not depth values

16

31

Mipmapping for Depth Textures with
Percentage Closer Filtering (1)

• Mipmap filtering works

• Averages the results of comparisons form the one or
two mipmap levels sampled

• You cannot use gluBuild2DMipmaps to construct depth
texture mipmaps

• Again, because you cannot blend depth values!
• If you do want mipmaps, the best approach is re-rendering the

scene at each required resolution

• Usually too expensive to be practical for all mipmap
levels

• OpenGL 1.2 LOD clamping can help avoid rendering all
the way down to the 1x1 level

32

Mipmapping for Depth Textures with
Percentage Closer Filtering (2)

• Mipmaps can make it harder to find an appropriate
polygon offset scale & bias that guarantee avoidance of
self-shadowing

• You can get “8-tap” filtering by using (for example) two
mipmap levels, 512x512 and 256x256, and setting your
min and max LOD clamp to 0.5

• Uses OpenGL 1.2 LOD clamping

17

33

Advice for Shadowed
Illumination Model (1)

• Typical illumination model with decal texture:
(ambient + diffuse) * decal + specular

The shadow map supplies a shadowing term

• Assume shadow map supplies a shadowing term, shade

• Percentage shadowed

• 100% = fully visible, 0% = fully shadowed

• Obvious updated illumination model for shadowing:
(ambient + shade * diffuse) * decal + shade * specular

• Problem is real-world lights don’t 100% block diffuse shading on
shadowed surfaces

• Light scatters; real-world lights are not ideal points

34

The Need for
Dimming Diffuse

No dimming; shadowed
regions have 0% diffuse
and 0% specular

With dimming; shadowed
regions have 40% diffuse
and 0% specular

Front facing shadowed
regions appear unnaturally flat.

Still evidence of curvature
in shadowed regions.

No specular
in shadowed
regions in
both versions.

18

35

Advice for Shadowed
Illumination Model (2)

• Illumination model with dimming:

(ambient + diffuseShade * diffuse) * decal + specular * shade

where diffuseShade is

diffuseShade = dimming + (1.0 – dimming) * shade

Easy to implement with NV_register_combiners & OpenGL 1.2
“separate specular color” support

• Separate specular keeps the diffuse & specular per-vertex
lighting results distinct

• NV_register_combiners can combine the primary
(diffuse) and secondary (specular) colors per-pixel
with the above math

36

Careful about
Back Projecting Shadow Maps (1)

• Just like standard projective textures, shadow
maps can back-project

Spotlight casting shadow
(a hooded light source)

Spotlight’s cone of illumination
where “true” shadows can form

Back-projection of
spotlight’s cone of illumination

Pentagon
would be
incorrectly
lit by back-
projection
if not specially
handled

19

37

Careful about
Back Projecting Shadow Maps (2)

• Techniques to eliminate back-projection:

• Modulate shadow map result with lighting result from a single
per-vertex spotlight with the proper cut off (ensures light is “off”
behind the spotlight)

• Use a small 1D texture where “s” is planar distance from the
light (generate “s” with a planar texgen mode), then 1D texture is
0.0 for negative distances and 1.0 for positive distances.

• Use a clip plane positioned at the plane defined by the light
position and spotlight direction

• Use the stencil buffer

• Simply avoid drawing geometry “behind” the light when applying
the shadow map (better than a clip plane)

• NV_texture_shader’s GL_PASS_THROUGH_NV mode

38

Other OpenGL Extensions for
Improving Shadow Mapping

• ARB_pbuffer – create off-screen rendering surfaces for rendering shadow
map depth buffers

• Normally, you can construct shadow maps in your back buffer and copy them
to texture

• But if the shadow map resolution is larger than your window resolution, use
pbuffers.

• NV_texture_rectangle – new 2D texture target that does not require texture
width and height to be powers of two

• Limitations
• No mipmaps or mipmap filtering supported
• No wrap clamp mode
• Texture coords in [0..w]x[0..h] rather than [0..1]x[0..1] range.

• Quite acceptable for for shadow mapping

20

39

Combining Shadow Mapping
with other Techniques

• Good in combination with techniques

• Use stencil to tag pixels as inside or outside of shadow

• Use other rendering techniques in extra passes
• bump mapping
• texture decals, etc.

• Shadow mapping can be integrated into more complex multi-
pass rendering algorithms

• Shadow mapping algorithm does not require access to vertex-
level data

• Easy to mix with vertex programs and such

40

Combine with Projective Texturing
for Spotlight Shadows

• Use a spotlight-style projected texture to give
shadow maps a spotlight falloff

21

41

Simulate atmospheric effects suchSimulate atmospheric effects such
as suspended dustas suspended dust

1) Construct shadow map1) Construct shadow map

2)2) Draw scene with shadow mapDraw scene with shadow map

3)3) Modulate projected texture Modulate projected texture
imageimage
with projected shadow mapwith projected shadow map

4)4) Blend backBlend back--toto--front shadowedfront shadowed
slicing planes also modulatedslicing planes also modulated
by projected texture imageby projected texture image

• Shadows in a dusty room

Combining Shadows with
Atmospherics

42

Steps for Shadow Mapping
1. Create an empty depth texture
2. Set it up with an internal format of GL DEPTH COMPONENT
3. Set the GL DEPTH TEXTURE MODE to GL LUMINANCE (so it stores the depth internally with a single luminance value) or to GL_INTENSITY
4. Enable the depth buffer
5. Render scene from the light
6. Copy the depth buffer into the texture using glCopyTexImage2D(...)
7. (Optional) Display texture to check that everything so far has worked
8. When we project the shadow map onto the scene, we need to compare the texture with the distance to the light we’ll compute at each pixel.

Tell OpenGL how to do this comparison by setting (using glTexEnvi(...)) the parameter GL TEXTURE COMPARE FUNC to GL LEQUAL.
9. Tell OpenGL what we want to compare on a per-pixel basis. Set GL TEXTURE COMPARE MODE to GL COMPARE R TO TEXTURE.
10. Tell OpenGL what sort of texture generation to use:

glTexGeni(GL S, GL TEX GEN MODE, GL EYE LINEAR);
glTexGeni(GL T, GL TEX GEN MODE, GL EYE LINEAR);
glTexGeni(GL R, GL TEX GEN MODE, GL EYE LINEAR);
glTexGeni(GL Q, GL TEX GEN MODE, GL EYE LINEAR);

11. Compute the matrix used to generate texture coordinates. This should be (S x Pl x Vl), where S is the scale/bias matrix, Pl is the light’s
projection matrix (the gluProjection(...) matrix you used when rendering the light view), and Vl is the light’s view matrix (the gluLookAt(...) matrix
you used when rendering the light view).

12. Inside your display function right after you call gluLookAt(...) for your eye’s viewpoint, setup your texture planes using:
glTexGenfv(GL S, GL EYE PLANE, plane s);
glTexGenfv(GL T, GL EYE PLANE, plane t);
glTexGenfv(GL R, GL EYE PLANE, plane r);
glTexGenfv(GL Q, GL EYE PLANE, plane q);
Define GLfloat plane s[4], plane t[4], plane r[4], plane q[4]; and initialize the planes as

SPlVl =

13. Enable texture generation for all four texture coordinates:
glEnable(GL TEXTURE GEN S);
glEnable(GL TEXTURE GEN T);
glEnable(GL TEXTURE GEN R);
glEnable(GL TEXTURE GEN Q);

22

43

Whew!

