
1

CUDA Programming Model

Xing Zeng, Dongyue Mou

• Introduction
• Motivation
• Programming Model
• Memory Model
• CUDA API
• Example
• Pro & Contra
• Trend

Outline

• Introduction
• Motivation
• Programming Model
• Memory Model
• CUDA API
• Example
• Pro & Contra
• Trend

Outline Introduction

What is CUDA?
- Compute Unified Device Architecture.
- A powerful parallel programming model for issuing and
managing computations on the GPU without mapping them to a
graphics API.

• Heterogenous - mixed serial-parallel programming
• Scalable - hierarchical thread execution model
• Accessible - minimal but expressive changes to C

Introduction
Software Stack:
• Libraries:

CUFFT & CUBLAS

• Runtime:
Common component
Device component
Host component

• Driver:
Driver API

Introduction
CUDA SDK

2

• Introduction
• Motivation
• Programming Model
• Memory Model
• CUDA API
• Example
• Pro & Contra
• Trend

Outline Motivation

GPU Programming Model
GPGPU Programming Model
CUDA Programming Model

Motivation

GPU Programming Model
GPGPU Programming Model
CUDA Programming Model

Motivation

GPU Programming Model for Graphics

Motivation

GPU Programming Model
GPGPU Programming Model
CUDA Programming Model

Motivation

GPGPU Programming Model
Trick the GPU into general-purpose
computing by casting problem as graphics

• Turn data into images ("texture maps")
• Turn algorithms into image synthesis ("rending passes")
Drawback:
• Tough learning curve
• potentially high overhead of graphics API
• highly constrained memory layout & access model
• Need for many passes drives up bandwidth consumption

3

Motivation

GPGPU Programming to do A + B

Motivation

What's wrong with GPGPU 1
APIs are specific to Graphics

Limited Instruction set
No thread Communication

Limited texture
size and dimension

Limited local storage

Limited shader outputs
No scatter

Motivation
What's wrong with GPGPU 2

Motivation

GPU Programming Model
GPGPU Programming Model
CUDA Programming Model

• Introduction
• Motivation
• Programming Model
• Memory Model
• CUDA API
• Example
• Pro & Contra
• Trend

Outline Programming Model

CUDA: Unified Design
Advantage:

HW: fully generally data-parallel arch-
tecture.
• General thread launch
• Global load-store
• Parallel data cache
• Scalar architecture
• Integers, bit operation

SW: program the GPU in C
• Scalable data parallel execuation/

memory model
• C with minimal yet powerful

extensions

4

Motivation

From GPGPU to CUDA Programming Model

Programming Model

Feature 1:
• Thread not pixel
• Full Integer and Bit Instructions
• No limits on branching, looping
• 1D, 2D, 3D threadID allocation

Feature 2:
• Fully general load/store to

GPU memory
• Untyped, not fixed texture types
• Pointer support

Feature 3:
• Dedicated on-chip memory
• Shared between threads for

inter-threads communication
• Explicitly managed
• As fast as registers

Programming Model
Important Concepts:
• Device: GPU, viewed as a

co-processor.
• Host: CPU
• Kernel: data-parallel,
computed-intensive positions
of application running on the
device.

Programming Model

Important Concepts:
• Thread: basic execution unit
• Thread block:
A batch of thread. Threads
in a block cooperate together,
efficiently share data.
Thread/block have unique id

• Grid:
A batch of thread block.
that excuate same kernel.
Threads in different block in
the same grid cannot directly
communicate with each other

Programming Model
Simple example (Matrx addition):
cpu c program: cuda program:

Programming Model
Hardware implementation:

A set of SIMD
Multiprocessors with On-
Chip shared memory

5

Programming Model
G80 Example:
• 16 Multiprocessors, 128 Thread Processors
• Up to 12,288 parallel threads active
• Per-block shared memory accelerates processing.

Programming Model
Streaming Multiprocessor (SM)
• Processing elements

o 8 scalar thread processors
o 32 GFLOPS peak at 1.35GHz
o 8192 32-bit registers (32KB)
o usual ops: float, int, branch...

• Hardware multithreading
o up to 8 blocks (3 active) residents at once
o up to 768 active threads in total

• 16KB on-chip memory
• supports thread communication
• shared amongst threads of a block

Programming Model
Execution Model:

Programming Model

Single Instruction Multiple Thread (SIMT) Execution:

• Groups of 32 threads formed
into warps
o always executing same instruction
o share instruction fetch/dispatch
o some become inactive

when code path diverges
o hardware automatically handles divergence

• Warps are primitive unit of scheduling
• pick 1 of 24 warps for each instruction slot.
• all warps from all active blocks are time-sliced

• Introduction
• Motivation
• Programming Model
• Memory Model
• CUDA API
• Example
• Pro & Contra
• Trend

Outline Memory Model

There are 6 Memory Types :

6

Memory Model

There are 6 Memory Types :

• Registers
o on chip
o fast access
o per thread
o limited amount
o 32 bit

Memory Model

There are 6 Memory Types :

• Registers
• Local Memory

o in DRAM
o slow
o non-cached
o per thread
o relative large

Memory Model

There are 6 Memory Types :

• Registers
• Local Memory
• Shared Memory

o on chip
o fast access
o per block
o 16 KByte
o synchronize between

threads

Memory Model

There are 6 Memory Types :

• Registers
• Local Memory
• Shared Memory
• Global Memory

o in DRAM
o slow
o non-cached
o per grid
o communicate between

grids

Memory Model

There are 6 Memory Types :

• Registers
• Local Memory
• Shared Memory
• Global Memory
• Constant Memory

o in DRAM
o cached
o per grid
o read-only

Memory Model

There are 6 Memory Types :

• Registers
• Local Memory
• Shared Memory
• Global Memory
• Constant Memory
• Texture Memory

o in DRAM
o cached
o per grid
o read-only

7

Memory Model

• Registers
• Shared Memory

o on chip

• Local Memory
• Global Memory
• Constant Memory
• Texture Memory

o in Device Memory

Memory Model

• Global Memory
• Constant Memory
• Texture Memory

o managed by host code
o persistent across kernels

• Introduction
• Motivation
• Programming Model
• Memory Model
• CUDA API
• Example
• Pro & Contra
• Trend

Outline CUDA API

CUDA API provides a easily path for users to write programs for
GPU device .

It consists of:

• A minimal set of extensions to C/C++
o type qualifiers
o call-syntax
o build-in variables

• A runtime library to support the execution
o host component
o device component
o common component

CUDA API

CUDA C/C++ Extensions:
• New function type qualifiers
__host__ void HostFunc(...); //executable on host
__global__ void KernelFunc(...); //callable from host
__device__ void DeviceFunc(...); //callable from device only

o Restrictions for device code (__global__ / __device__)
no recursive call
no static variable
no function pointer
__global__ function is asynchronous invoked
__global__ function must have void return type

CUDA API

CUDA C/C++ Extensions:
• New variable type qualifiers
__device__ int GlobalVar; //in global memory, lifetime of app
__const__ int ConstVar; //in constant memory, lifetime of app
__shared__ int SharedVar; //in shared memory, lifetime of blocks

o Restrictions
no external usage
only file scope
no combination with struct or union
no initialization for __shared__

8

CUDA API

CUDA C/C++ Extensions:
• New syntax to invoke the device code
KernelFunc<<< Dg, Db, Ns, S >>>(...);

o Dg: dimension of grid
o Db: dimension of block
o Ns: optional, shared memory for external variables
o S : optional, associated stream

• New build-in variables for indexing the threads
o gridDim: dimension of the whole grid
o blockIdx: index of the current block
o blockDim: dimension of each block in the grid
o threadIdx: index of the current thread

CUDA API

CUDA Runtime Library:
• Common component

o Vector/Texture Types
o Mathematical/Time Functions

• Device component
o Mathematical/Time/Texture Functions
o Synchronization Function

o __syncthreads()
o Type Conversion/Casting Functions

CUDA API

CUDA Runtime Library:
• Host component

o Structure
Driver API
Runtime API

o Functions
Device, Context, Memory, Module, Texture management
Execution control
Interoperability with OpenGL and Direct3D

CUDA API

The CUDA source file uses .cu as
extension. It contains host and device
source codes.

The CUDA Compiler Driver nvcc can
compile it and generate CPU/PTX
binary code.
(PTX: Parallel Thread Execution, a
device independent VM code)

PTX code may be further translated
for special GPU-Arch.

• Introduction
• Motivation
• Programming Model
• Memory Model
• CUDA API
• Example
• Pro & Contra
• Trend

Outline Programming Model
Simple example (Matrx addition):
cpu c program: cuda program:

9

• Introduction
• Motivation
• Programming Model
• Memory Model
• CUDA API
• Example
• Pro & Contra
• Trend

Outline Pro & Contra

CUDA allows
• massive parallel computing
• with a relative low price
• high integrated solution
• personal supercomputing
• ecofriendly production
• easy to learn

Pro & Contra

Problem
• slightly low precision
• limited support for IEEE-754
• no recursive function call
• hard to use for irregular join/fork logic
• no concurrency between jobs

• Introduction
• Motivation
• Programming Model
• Memory Model
• CUDA API
• Example
• Pro & Contra
• Trend

Outline

Trend

• More cores on-chip
• Better support for float point
• Flexiber configuration & control/data flow
• Lower price
• Support higher level programming language

References

[1] CUDA Programming Guide, nVidia Corp.
[2] The CUDA Compiler Driver, nVidia Corp.
[3] Parallel Thread Execution, nVidia Corp.
[4] CUDA: A Heterogeneous Parallel Programming Model for
Manycore Computing, ASPLOS 2008, gpgpu.org

10

Question?

