
Order-Independent TransparencyOrder-Independent Transparency
Cass Everitt

NVIDIA Corporation
cass@nvidia.com

2

Overview

• Why is correct transparency hard?
• Depth peeling

• Two depth buffers
• Enter the shadow map

• Precision/invariance issues
• Depth replace texture shader

• Blending the layers
• Other applications

3

Good Transparency Bad Transparency

Can’t just glEnable(GL_BLEND)…

without OITwith OIT

4

Why is correct transparency hard?

• Most hardware does object-order rendering
• Correct transparency requires sorted traversal

• Have to render polygons in sorted order
• Not very convenient

• Polygons can’t intersect
• Lot of extra application work

• Especially difficult for dynamic scene databases

5

Depth Peeling

• The algorithm uses an “implicit sort” to extract
multiple depth layers
• First pass render finds front-most fragment

color/depth
• Each successive pass render finds (extracts) the

fragment color/depth for the next-nearest fragment
on a per pixel basis

• Use dual depth buffers to compare previous nearest
fragment with current

• Second “depth buffer” used for comparison (read
only) from texture [more on this later]

6

Layer 0 Layer 1

Layer 2 Layer 3

7

Cross-section view of
depth peeling

0 depth 1

Layer 0 Layer 1 Layer 2

Depth peeling strips away depth layers with each
successive pass. The frames above show the
frontmost (leftmost) surfaces as bold black lines,
hidden surfaces as thin black lines, and “peeled away”
surfaces as light grey lines.

0 depth 1 0 depth 1

8

Dual Depth Buffer Pseudo-code
for (i = 0; i < num_passes; i++)
{

clear color buffer
depth unit 0:

if(i == 0) { disable depth test }
else { enable depth test }
bind depth buffer (i % 2)
disable depth writes /* read-only depth test */
set depth func to GREATER

depth unit 1:
bind depth buffer ((i+1) % 2)
clear depth buffer
enable depth writes;
enable depth test;
set depth func to LESS

render scene
save color buffer RGBA as layer i

}

9

Implementation

• There is no “dual depth buffer” extension to
OpenGL, so what can we do?

• Just need one depth test with writeable depth
buffer – the other can be read-only
• Shadow mapping is a read-only depth test!

• Depth test can have an arbitrary camera location
• Other interesting uses for clip volumes

• Fast copies make this proposition reasonable
• Copies will be unnecessary in the future…

10

Precision / Invariance issues

• Using shadow mapping hardware introduces
precision and invariance issues
• depth rasterization usually just needs to match

output depth buffer precision, and requires no
perspective correction

• Texture hardware requires perspective correction
and projection at high precision

• Making things match would be difficult without the
DEPTH_REPLACE texture shader

• Computes with texture hardware at texture precision
• Solves invariance problems at some extra expense
• Will be cheaper in the future…

11

1 layer 2 layers

3 layers 4 layers

12

Compositing

• Each time we peel, we capture the RGBA, then as
a final step, we blend all the layers together from
back to front
• Opaque fragments completely overwrite previous

transparent ones
• Could peel from back to front and start with all

fully opaque objects
• Fewer layers required
• Would be useful with occlusion / visibility test
• Must peel all layers to avoid blending artifacts
• Variations on this approach would still allow early

exit (buffer_region extension)

13

Conclusions

• Results are nice!
• Get correct transparency without invasive changes

to internal data structures
• Can be “bolted on” to existing CAD/CAM apps

• Requires n scene traversals for n correctly sorted
depths
• n = 4 is often quite satisfactory (see previous slide)

• Depth Peeling instrumental in “Woo shadowmaps”
• Other uses?

• Shadow maps are for more than shadows!

14

Questions?

• cass@nvidia.com
• http://www.nvidia.com/developer

Thanks for attending

