
Mark Kilgard, January 19, 2016

Migrating from OpenGL to Vulkan

2

About the Speaker

Mark Kilgard

Principal Graphics Software Engineer in Austin, Texas

Long-time OpenGL driver developer at NVIDIA

Author and implementer of many OpenGL extensions

Collaborated on the development of Cg

First commercial GPU shading language

Recently working on GPU-accelerated vector graphics

(Yes, and wrote GLUT in ages past)

Who is this guy?

3

Motivation for Talk

What kinds of apps benefit from Vulkan?

How to prepare your OpenGL code base to transition to Vulkan

How various common OpenGL usage scenarios are re-thought in Vulkan

Re-thinking your application structure for Vulkan

Coming from OpenGL, Preparing for Vulkan

4

Analogy
Different Valid Approaches

5

Analogy
Fixed-function OpenGL

Pre-assembled toy car
fun out of the box,

not much room for customization

6

Analogy
Modern AZDO OpenGL with Programmable Shaders

LEGO Kit
you build it yourself,

comes with plenty of useful, pre-shaped pieces

AZDO = Approaching Zero Driver Overhead

7

Analogy
Vulkan

Pine Wood Derby Kit
you build it yourself to race from raw materials

power tools used to assemble, adult supervision highly recommended

8

Analogy
Different Valid Approaches

Fixed-function OpenGL
Modern AZDO OpenGL with

Programmable Shaders
Vulkan

9

Beneficial Vulkan Scenarios

Is your graphics work

CPU bound?

Can your graphics

work creation be

parallelized?

start

yes

Vulkan

friendly

yes

Has Parallelizable CPU-bound Graphics Work

10

Beneficial Vulkan Scenarios

Your graphics

platform is fixed

You’ll

do whatever

it takes to squeeze

out max

perf.

start

yes

Vulkan

friendly

yes

Maximizing a Graphics Platform Budget

11

Beneficial Vulkan Scenarios

You put

a premium on

avoiding

hitches

You can

manage your

graphics resource

allocations

start

yes

Vulkan

friendly

yes

Managing Predictable Performance, Free of Hitching

12

Unlikely to Benefit

1. Need for compatibility to pre-Vulkan platforms

2. Heavily GPU-bound application

3. Heavily CPU-bound application due to non-graphics work

4. Single-threaded application, unlikely to change

5. App can target middle-ware engine, avoiding direct 3D graphics API dependencies

• Consider using an engine targeting Vulkan, instead of dealing with Vulkan yourself

Scenarios to Reconsider Coding to Vulkan

13

First Steps Migrating to Vulkan

Eliminate fixed-function

Source all geometry from vertex buffer objects (VBOs) with vertex arrays

Use all programmable GLSL shaders with layout() qualifiers

Consider using samplers

Do all rendering into framebuffer objects (FBOs)

Stay within the non-deprecated subset (e.g. no GL_QUADS, for now…)

Think about better batching & classify all your render states

Avoid depending on OpenGL context state

All pretty sensible advice, even if you stick with OpenGL

Modernize Your OpenGL

14

Next Steps Migrating to Vulkan

Think about how your application would handle losing the GPU

Similar to ARB_robustness

Profile your application, understand what portions are CPU and GPU bound

Vulkan most benefits apps bottlenecked on graphics work creation and driver validation

Is that your app?

Adopt common features available in both OpenGL and Vulkan first in OpenGL

Proving out tessellation or multi-draw-indirect probably easier first in your stable
OpenGL code base

Again all pretty sensible advice, even if you stick with OpenGL

Modernize Your OpenGL

15

Thinking about Vulkan vs. OpenGL

OpenGL, largely understood in terms of

Its API, functions for commands and queries

And how that API interacts with the OpenGL
state machine

OpenGL has lots of implicit synchronization

Errors handled largely by ignoring command

OpenGL API manages various objects

But allocation of underlying device resources
largely handled by driver

+

OpenGL Has a Well-established Approach

Originally client-server

16

Thinking about Vulkan vs. OpenGL

Vulkan constructs and submits work for a
graphics device

Idealized graphics + compute device

Requires application to maintain valid Vulkan
usage for proper operation

Not expected to behave correctly in face of
errors, justified for performance

Instead of updating state machine, Vulkan is
about establishing working relationships
between objects

Pre-validates operation of actions

Vulkan Plays By Different Rules

Explicit API

Explicit memory management

Explicit synchronization

Explicit queuing of work

Explicit management of buffer state with
render passes

Not client-server, explicitly depends on
shared resources and memory

17

Truly Transitioning to Vulkan

Much more graphics resource responsibility for the application

You need to allocate from large device memory chunk

You become responsible for proper explicit synchronization

Fences, Barriers, Semaphores

Barriers are probably the hardest to appreciate

Everything has to be structured as pipeline state objects (PSOs)

Understand render passes

Think how parallel command buffer generation would operate

You become responsible for multi-threaded exclusion of your Vulkan objects

Vulkan Done Right Rethinks Entire Graphics Rendering

18

Common Graphics Tasks

Loading a mipmapped texture

Loading a vertex buffer object for rendering

Choosing a shader representation and loading shaders

Initiating compute work

Managing a memory sub-allocator

Thinking about render passes

Managing Predictable Performance, Free of Hitching

19

Loading a Texture

Well traveled path via OpenGL 3.0

glBindTexture(GL_TEXTURE_2D, texture_name);

glTexImage2D(GL_TEXTURE_2D, 0, GL_SRGB8, width, height,
 /*border*/0, GL_UNSIGNED_BYTE, GL_RGBA, pixels);

glGenerateMipmap(GL_TEXTURE_2D);

Does more than you think it does

The OpenGL View

20

Logical Operations to Load a Texture

1. Create host driver objects corresponding to texture/sampler/image/view/layout

2. Copy call’s image to staging memory accessible to host+device

3. (OpenGL might do a format conversion and pixel transfer)

4. Allocates device memory for texture image for texturing

5. Copy image from host+device memory to device memory for texturing

6. Allocate device resources for sampler

7. Generate mipmap levels

21

Various Vulkan Objects “inside” a Texture

No such thing as “VkTexture”

Instead

Texture state in Vulkan = VkDescriptorImageInfo

Combines: VkSampler + VkImageView + VkImageLayout

Sampling state + Image state + Current image layout

Texture binding in Vulkan = part of VkDescriptorSetLayoutBinding

Contained with VkDescriptorSetLayout

Building Up the OpenGL Texture Object from Vulkan Concepts

OpenGL textures are opaque,

so lacks an exposed image layout

22

Allocating Image Memory for Texture

VkImage

VkDevice

vkGetImageMemoryRequirements

VkMemoryRequirements

vkBindImageMemory
VkDeviceMemory

vkAllocateMemory

vkCreateImage

With Vulkan Naïve approach!

vkAllocateMemory is expensive.

Demos may do this, but real apps

should sub-allocate from large

VkDeviceMemory allocations

See next slide…

23

Sub-allocating Image Memory for Texture

VkImage

VkDevice

vkGetImageMemoryRequirements

VkMemoryRequirements

vkBindImageMemory

VkDeviceMemory

vkAllocateMemory

vkCreateImage

One large device memory allocation, assigned to multiple images

Proper approach!

vkAllocateMemory makes a

large allocation with and then

sub-allocates enough

memory for the image

So who writes

the sub-allocator?

You do!

24

Binding Descriptor Sets for a Texture

VkDescriptorImageInfo VkSampler

VkImageView

VkImageLayout

VkDescriptorSetLayout

VkWriteDescriptorSet vkAllocateDescriptorSets

VkPipelineLayout

vkCmdBindDescriptorSets

VkCommandBuffer

vkCreateDescriptorSetLayout

vkCreatePipelineLayout

vkUpdateDescriptorSets

So Pipeline Sees Texture

25

Establishing Sampler Bindings for a Pipeline Object

VkDescriptorSetLayoutBinding for a sampler binding

vkCreateDescriptorSetLayout

VkDescriptorSetLayout

vkCreatePipelineLayout

VkPipelineLayout

vkCreateGraphicsPipelines

VkPipeline

vkCmdBindPipeline

Vulkan Pipelines Need to Know How They Will Bind Samplers

VkCommandBuffer

26

Base Level Specification + Mipmap Generation

VkCommandBuffer

vkCmdBlitImage

vkCmdPipelineBarrier

vkCmdBlitImage

for each upper mipmap level

vkCmdPipelineBarrier

Vulkan Command Buffer Orchestrates Blit + Downsamples

staging

image

texture

base

image

texture

base

image

level 1

mipmap

level i

mipmap

level i+1

mipmap

27

Binding to a Vertex Array Object (VAO) and
Rendering from Vertex Arrays

Well traveled path via OpenGL 3.0

glBindVertexArray(vertex_array_object);

glDrawElements(GL_TRIANGLES, count, GL_UNSIGNED_INT, indices);

Again, does more than you think it does

The OpenGL View

28

Allocating Buffer Memory for VBO

VkBuffer

VkDevice

vkGetBufferMemoryRequirements

VkMemoryRequirements

vkBindBufferMemory

VkDeviceMemory

vkAllocateMemory

VkCreateBuffer

With Vulkan Naïve approach!

vkAllocateMemory is expensive.

Demos may do this, but real apps

should sub-allocate from large

VkDeviceMemory allocations

29

Binding Vertex State To A Pipeline

VkVertexInputBindingDescription

VkVertexInputAttributeDescription

VkPipelineVertexInputStateCreateInfo

VkGraphicsPipelineCreateInfo

VkGraphicsPipeline

vkCreateGraphicsPipelines

So Pipeline Sees Vertex Input State

VkPipelineShaderStageCreateInfo

VkPipelineInputAssemblyStateCreateInfo

VkPipelineViewportStateCreateInfo

VkPipelineRasterizationStateCreateInfo

VkPipelineMultisampleStateCreateInfo

VkPipelineDepthStencilStateCreateInfo

VkPipelineColorBlendStateCreateInfo

VkPipelineDynamicStateCreateInfo

30

Binding Vertex Buffer For Drawing

For the vertex input state vkCmdBindPipeline

Buffer Binding Is Performed With The Command Queue

vkCmdBindVertexBuffers For the vertex data

vkCmdBeginRenderPass

vkCmdBindDescriptorSets

vkCmdDrawIndexed

vkCmdEndRenderPass

Begin Drawing

Draw

End Drawing

31

Big Features, Ready for Vulkan

Compute shaders

Tessellation shaders

Geometry shaders

Sparse resources (textures and buffers)

In OpenGL 4.5 today

Vulkan has the same big features, just different API

Mostly the same GLSL can be used in either case

Prototype in OpenGL now, Enable in Vulkan next

32

Thinking about render passes

OpenGL just has commands to draw primitives

No explicit notion of a render pass in OpenGL API

Vulkan does have render passes, VkRenderPass

Includes notion of sub-passes

Designed to facilitate tiling architectures

Bounds the lifetime of intermediate framebuffer results

Allows iterating over subpasses (chunking) within a render pass on a per tile basis

In most cases, you won’t need to deal with subpasses

How do rendering operations affect the retained framebuffer?

33

Render Pass

Describes the list attachments the render pass involves

Each attachment can specify

How the attachment state is initialized (loaded, cleared, dont-care)

How the attach state is stored (store, or dont-care)

Don’t-care allows framebuffer intermediates to be discarded

E.g. depth buffer not needed after the render pass

How the layout of attachment could change

Sub-pass dependencies indicate involvement of attachments within a subpass

What does a Vulkan Render Pass Provide?

34

Render Passes

vkCmdBeginRenderPass

vkCmdEndRenderPass

vkCmdBeginRenderPass

vkCmdNextSubpass

vkCmdNextSubpass

vkCmdEndRenderPass

Monolithic or Could Have Sub-passes

Each subpass

has its own

description and

dependencies

Simple render pass,
no subpasses

Complex render pass,
with multiple subpasses

35

Vulkan Application Structure
Parallel Command Buffer Generation

Traditional single-threaded

OpenGL app structure

update scene

draw scene

single thread

Possible multi-threaded

Vulkan app structure

collect secondary

command buffers

distribute

update scene work

submit

command

buffer

build secondary

command buffer

work thread

build secondary

command buffer

work thread

build secondary

command buffer

work thread

build secondary

command buffer

work thread

36

Conclusions

Vulkan is a radical departure from OpenGL

Modernizing your OpenGL code base is definitely good for moving to Vulkan

But it will take more work than that!

Vulkan’s explicitness makes simple operations like a texture bind quite involved

Think about multi-threaded command buffer creation

Get Ready for Vulkan

