
1

Mathematics of Per-Pixel LightingMathematics of Per-Pixel Lighting

Cass Everitt

NVIDIA Corporation

cass@nvidia.com

Overview
• Why Per-Pixel Lighting?

• Review

• OpenGL Transforms and Spaces

• OpenGL Per-vertex Lighting

• Object Space Per-vertex Lighting

2

• Object Space Per-vertex Lighting

• Surface-local Space?

• Other names

• Why is this necessary?

• Surface-local Space Per-Vertex Lighting

• Per-Pixel Lighting

• In Surface-local Space

• In other spaces?

Why Per-Pixel Lighting?

• Because it looks better than per-vertex lighting

• Because it’s hardware accelerated

• Because everyone else is doing it 

• Don’t be the last on your block

3

This is do-it-yourself lighting

• You get total control, but this means you have to 
do it all
• No glShadeModel(GL_PHONG)

• No glEnable(GL_BUMP_MAPPING)

4

_ _

• If you don’t know how to implement per-vertex 
lighting, learn how to do that first

• Per-pixel shading is an extension of per-vertex 
shading (for the most part)

OpenGL Transformations

• OpenGL operation transforms 
coordinates through several 
coordinate frames or spaces

• Each of the spaces has various 
properties that make it useful 
for some operation

MODELVIEW matrix

object space

eye space

PROJECTION matrix

5

for some operation

• Vertex attributes are specified 
in object space

• Lighting, eye-linear texgen, and 
fog happen in eye space

• Clipping happens after 
projection in clip space

• Rasterization happens in window 
space

PROJECTION matrix

clip space

Perspective Divide

normalized device coordinates

viewport/depthrange scale & bias

window space

Example Scene -- world space

-z

6

x-x

z

Note: world space is not an explicit space in OpenGL



2

Example Scene -- eye space
-z

7

x-x

z

Object Space

Object Space For 
-z

Object Space For 
-z

8

x-x

z

x-x

z

Each object has its own origin, orientation, and scale

OpenGL Per-Vertex Lighting

• For OpenGL Per-Vertex Lighting, all calculations 
happen in eye space

• Not essential, but convenient

• For each OpenGL per-vertex light, the

9

For each OpenGL per vertex light, the 
illumination is computed as (assuming separate 
specular)

  clicmclicmpri ddaaattspotC ln ))((

   clicm
s

sec ssfattspotC rmhn ))((

Lighting in eye space
-z

10

x-x

z

Lighting in eye space (2)

The vectors…

11

nn

ll
EEhh

Transforming Normals

• To evaluate the lighting equation in eye space, 
normals must be transformed from object space
into eye space

• Normals are not simply transformed by the 

12

modelview matrix like position

• You may know from the Red Book or various 
other sources that “normals are transformed by 
the inverse-transpose of the modelview matrix”, 
but let’s consider why…

• The following slides should help provide some 
intuition about the transforming of normals 



3

Transforming Normals (2)

• Translation of position does not affect normals

-z-z

13

x-x

z

x-x

z

Transforming Normals (3)

• Rotation is applied to normals just like it is to 
position

-z-z

14

x-x

z

x-x

z

Transforming Normals (4)

• Uniform scaling of position does not affect the 
direction of normals

-z-z

15

x-x

z

x-x

z

Note that we are only considering how the direction of 
a normal is affected by transforming the position, not 
magnitude

Transforming Normals (5)

• Non-uniform scaling of position does affect the 
direction of normals!

• Opposite of the way position is affected – or the inverse
of the scaling matrix that’s applied to position

16

x-x

-z

z

x-x

-z

z

Note that we are only considering how the direction of 
a normal is affected by transforming the position

Transforming Normals (6)

• To summarize, these are the basic position 
transformations and the corresponding normal 
transformation:

translation

position normal

T I

17

rotation R R

scaling S S-1

• Note that any sort of scaling applies inversely to the normal 
– we treat all scales (uniform and non-uniform) the same

• This is why we need GL_NORMALIZE and 
GL_RESCALE_NORMAL for OpenGL lighting

• We have to deal with it in per-pixel lighting as well

Transforming Normals (7)

• How does this match what OpenGL does?

oe nn TM

• For simplicity, consider M, the modelview matrix, is 
composed of a scale and a rotation

18

composed of a scale and a rotation
• inverse-transpose is distributive

• For rotation (orthonormal) matrices               , and

• For scaling (diagonal) matrices

TM

T1 RR 

TSS 

 

1

TT

T













RS

SR

RS

This matches our
ad hoc result!

RR T



4

Object Space Per-Vertex Lighting

• Nothing in the lighting equation requires 
evaluation in eye space - consider lighting in object 
space instead

• Non-uniform scaling in the modeling matrix would complicate things, 
so we will ignore that for now…

If th d li t i i i l i id b d

19

• If the modeling matrix is simply a rigid body 
transform, then this is easy…

• Need to transform the light into object space from eye 
space

• No need to transform each normal now (cheaper)

eyeobj ll 1M local light source

eyeobj ll TM infinite light source

Example Scene -- object space for 

-z

20

x-x

z

Example Scene -- object space for 

-z

21

x-x

z

Lighting      in object space
-z Note that the dot products are the 

same whether the vectors are in 
object space or eye space as long as 
all vectors are in the same space

22

The vectors…

x-x

z

Surface-local Space
• This gets called a lot of things… 

• surface-local space
• tangent space

• texture space

• A surface-local space is a class of 
spaces defined for every point on a

MODELVIEW matrix

object space

surface-local matrix

surface-local space

23

spaces defined for every point on a 
surface

• Tangent space and texture space are 
surface-local spaces that give specific 
definitions to the basis vectors

• Consider one additional transform 
from surface-local space to object space

eye space

PROJECTION matrix

clip space

Perspective Divide

normalized device coordinates

viewport/depthrange scale & bias

window space

Surface-local Space (2)

• The classes of surface-local space we use are 
defined for every point on a surface such that the 
point is at the origin, and the geometric surface 
normal is along the positive z axis 

24

• Note that for per-pixel lighting the geometric surface 
normal is generally not what we use in the lighting 
equation

• The x and y axes are orthogonal and in the 
tangent plane of the surface

• Now the entire scene can be defined relative to 
any point on any surface in the scene – not just 
relative to any object



5

Lighting      in surface-local space

The vectors…

-z

25

x-x

z

Lighting      in surface-local space

The vectors…

-z

26

x-x

z

Surface-local matrix

• If we specified vertices in surface-local space, they’d 
all be the same!
• glNormal3f(0,0,1); glVertex3f(0,0,0);

• The surface-local matrix, Sl, would provide the 
object space position and the object space normal 

i t ti d it ld t

27

orientation, and it would vary per-vertex:

• More on the tangent and binormal (T and B) 
vectors later…





















1000
zzzz

yyyy

xxxx

l PNBT

PNBT

PNBT

S

T -- tangent vector
B -- binormal vector
N -- object space vertex normal
P -- object space vertex position

Per-Vertex Lighting in surface-local 
space

• As with lighting in eye space or object space, surface-
local space is a perfectly valid coordinate frame to 
evaluate the lighting equation

• We simply transform the light and eye into surface-
local space – the normal is known by definition so

28

local space – the normal is known by definition, so 
it doesn’t need to be transformed

• Compare eye space and surface-local space lighting:

• Eye space lighting: the light vector or eye vector are 
“free”, but you must transform each normal into 
eye space

• Surface-local space lighting:  the normal is free, but 
you must transform the light and eye vectors into 
surface-local space

Per-Pixel Lighting

• Getting back to the original point…

• We really want to evaluate the lighting equation 
per-pixel

• Rather than passing in normals per-vertex, we’ll

29

Rather than passing in normals per vertex, we ll 
fetch them from a texture map

• We simulate surface features with illumination only

per-vertex normals per-pixel normals

simulated 
surface

Per-Pixel Lighting (2)

• The texture map containing normals (normal 
map) clearly uses normals that are not aligned 
with the +z axis in surface-local space

• This makes the tangent and binormal vectors 

30

important (see discussion later)

• GPUs certainly have enough horsepower to 
evaluate the illumination equation at each pixel –
but it is more expensive in eye space!

• That would require transforming each normal into 
eye space (after fetching it from the texture map) 



6

Per-Pixel Lighting (2)

• The better solution is to light in surface-local space

• Fetched normals are already in the correct space

• Light and eye vector interpolate nicely as long as 
the tangent and binormal are “well behaved”

31

• All remaining arithmetic can be evaluated with 
register combiners (not important these days)

• Minor limitation:  as with object space per-vertex 
lighting, you can’t have a non-uniform scale 
without requiring a per-normal transform and 
renormalize

• don’t do lots of non-uniform scaling -- it won’t behave correctly

Tangent and Binormal

• Whether we implement per-pixel lighting in 
surface-local space or eye space, the tangent and 
binormal vectors need to be well-behaved from 
vertex to vertex 

32

• Specifically, 
and

T1

T2

B2B1

  1,, 21 TTalerp

  1,, 21 BBalerp

T1

T2
B2

B1

good bad

Tangent and Binormal (2)

• Another way to look at the problem case:

T

B1
x-x

y
surface-local space 
for vertex 1

l1l1

33

T1

T2
B2

x

x-x

-y

-y

y surface-local space 
for vertex 2

l2l2
The vectors we 
interpolate over 
the polygon are:

very 
denormalized

-x

-y

y

x

l1l1

l2l2

Tangent and Binormal (3)

• In the previous case, we considered transforming the 
light into the surface-local space of each vertex and 
interpolating it for the per-pixel light vector -- this is 
what we would do for GeForce2 (old GPUs)

With modern GPus we can interpolate the 3x3 matrix

34

• With modern GPus, we can interpolate the 3x3 matrix 
over the surface and transform the normals by it – for 
this case if the tangent and binormal are not well-
behaved, other anomalous behavior will result

• Normal “twisting”

• Incorrect bump scale/smoothing

• The interpolated matrix should be “nearly orthonormal”

Questions?

Cass Everitt

cass@nvidia.com

www.nvidia.com/Developer

35


