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Overview
• Why Per-Pixel Lighting?

• Review

• OpenGL Transforms and Spaces

• OpenGL Per-vertex Lighting

• Object Space Per-vertex Lighting

2

• Object Space Per-vertex Lighting

• Surface-local Space?

• Other names

• Why is this necessary?

• Surface-local Space Per-Vertex Lighting

• Per-Pixel Lighting

• In Surface-local Space

• In other spaces?

Why Per-Pixel Lighting?

• Because it looks better than per-vertex lighting

• Because it’s hardware accelerated

• Because everyone else is doing it 

• Don’t be the last on your block
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This is do-it-yourself lighting

• You get total control, but this means you have to 
do it all
• No glShadeModel(GL_PHONG)

• No glEnable(GL_BUMP_MAPPING)
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_ _

• If you don’t know how to implement per-vertex 
lighting, learn how to do that first

• Per-pixel shading is an extension of per-vertex 
shading (for the most part)

OpenGL Transformations

• OpenGL operation transforms 
coordinates through several 
coordinate frames or spaces

• Each of the spaces has various 
properties that make it useful 
for some operation

MODELVIEW matrix

object space

eye space

PROJECTION matrix
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for some operation

• Vertex attributes are specified 
in object space

• Lighting, eye-linear texgen, and 
fog happen in eye space

• Clipping happens after 
projection in clip space

• Rasterization happens in window 
space

PROJECTION matrix

clip space

Perspective Divide

normalized device coordinates

viewport/depthrange scale & bias

window space

Example Scene -- world space

-z

6

x-x

z

Note: world space is not an explicit space in OpenGL
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Example Scene -- eye space
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Object Space

Object Space For 
-z

Object Space For 
-z
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Each object has its own origin, orientation, and scale

OpenGL Per-Vertex Lighting

• For OpenGL Per-Vertex Lighting, all calculations 
happen in eye space

• Not essential, but convenient

• For each OpenGL per-vertex light, the
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For each OpenGL per vertex light, the 
illumination is computed as (assuming separate 
specular)
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Lighting in eye space
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Lighting in eye space (2)

The vectors…
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Transforming Normals

• To evaluate the lighting equation in eye space, 
normals must be transformed from object space
into eye space

• Normals are not simply transformed by the 
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modelview matrix like position

• You may know from the Red Book or various 
other sources that “normals are transformed by 
the inverse-transpose of the modelview matrix”, 
but let’s consider why…

• The following slides should help provide some 
intuition about the transforming of normals 
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Transforming Normals (2)

• Translation of position does not affect normals

-z-z
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Transforming Normals (3)

• Rotation is applied to normals just like it is to 
position

-z-z
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Transforming Normals (4)

• Uniform scaling of position does not affect the 
direction of normals
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Note that we are only considering how the direction of 
a normal is affected by transforming the position, not 
magnitude

Transforming Normals (5)

• Non-uniform scaling of position does affect the 
direction of normals!

• Opposite of the way position is affected – or the inverse
of the scaling matrix that’s applied to position
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Note that we are only considering how the direction of 
a normal is affected by transforming the position

Transforming Normals (6)

• To summarize, these are the basic position 
transformations and the corresponding normal 
transformation:

translation

position normal

T I
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rotation R R

scaling S S-1

• Note that any sort of scaling applies inversely to the normal 
– we treat all scales (uniform and non-uniform) the same

• This is why we need GL_NORMALIZE and 
GL_RESCALE_NORMAL for OpenGL lighting

• We have to deal with it in per-pixel lighting as well

Transforming Normals (7)

• How does this match what OpenGL does?

oe nn TM

• For simplicity, consider M, the modelview matrix, is 
composed of a scale and a rotation
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composed of a scale and a rotation
• inverse-transpose is distributive

• For rotation (orthonormal) matrices               , and

• For scaling (diagonal) matrices

TM

T1 RR 
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This matches our
ad hoc result!
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Object Space Per-Vertex Lighting

• Nothing in the lighting equation requires 
evaluation in eye space - consider lighting in object 
space instead

• Non-uniform scaling in the modeling matrix would complicate things, 
so we will ignore that for now…

If th d li t i i i l i id b d
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• If the modeling matrix is simply a rigid body 
transform, then this is easy…

• Need to transform the light into object space from eye 
space

• No need to transform each normal now (cheaper)

eyeobj ll 1M local light source

eyeobj ll TM infinite light source

Example Scene -- object space for 
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Example Scene -- object space for 
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Lighting      in object space
-z Note that the dot products are the 

same whether the vectors are in 
object space or eye space as long as 
all vectors are in the same space
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The vectors…
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Surface-local Space
• This gets called a lot of things… 

• surface-local space
• tangent space

• texture space

• A surface-local space is a class of 
spaces defined for every point on a

MODELVIEW matrix

object space

surface-local matrix

surface-local space
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spaces defined for every point on a 
surface

• Tangent space and texture space are 
surface-local spaces that give specific 
definitions to the basis vectors

• Consider one additional transform 
from surface-local space to object space

eye space

PROJECTION matrix

clip space

Perspective Divide

normalized device coordinates

viewport/depthrange scale & bias

window space

Surface-local Space (2)

• The classes of surface-local space we use are 
defined for every point on a surface such that the 
point is at the origin, and the geometric surface 
normal is along the positive z axis 
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• Note that for per-pixel lighting the geometric surface 
normal is generally not what we use in the lighting 
equation

• The x and y axes are orthogonal and in the 
tangent plane of the surface

• Now the entire scene can be defined relative to 
any point on any surface in the scene – not just 
relative to any object
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Lighting      in surface-local space

The vectors…

-z
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Lighting      in surface-local space

The vectors…
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Surface-local matrix

• If we specified vertices in surface-local space, they’d 
all be the same!
• glNormal3f(0,0,1); glVertex3f(0,0,0);

• The surface-local matrix, Sl, would provide the 
object space position and the object space normal 

i t ti d it ld t
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orientation, and it would vary per-vertex:

• More on the tangent and binormal (T and B) 
vectors later…
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l PNBT

PNBT

PNBT

S

T -- tangent vector
B -- binormal vector
N -- object space vertex normal
P -- object space vertex position

Per-Vertex Lighting in surface-local 
space

• As with lighting in eye space or object space, surface-
local space is a perfectly valid coordinate frame to 
evaluate the lighting equation

• We simply transform the light and eye into surface-
local space – the normal is known by definition so
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local space – the normal is known by definition, so 
it doesn’t need to be transformed

• Compare eye space and surface-local space lighting:

• Eye space lighting: the light vector or eye vector are 
“free”, but you must transform each normal into 
eye space

• Surface-local space lighting:  the normal is free, but 
you must transform the light and eye vectors into 
surface-local space

Per-Pixel Lighting

• Getting back to the original point…

• We really want to evaluate the lighting equation 
per-pixel

• Rather than passing in normals per-vertex, we’ll
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Rather than passing in normals per vertex, we ll 
fetch them from a texture map

• We simulate surface features with illumination only

per-vertex normals per-pixel normals

simulated 
surface

Per-Pixel Lighting (2)

• The texture map containing normals (normal 
map) clearly uses normals that are not aligned 
with the +z axis in surface-local space

• This makes the tangent and binormal vectors 
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important (see discussion later)

• GPUs certainly have enough horsepower to 
evaluate the illumination equation at each pixel –
but it is more expensive in eye space!

• That would require transforming each normal into 
eye space (after fetching it from the texture map) 
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Per-Pixel Lighting (2)

• The better solution is to light in surface-local space

• Fetched normals are already in the correct space

• Light and eye vector interpolate nicely as long as 
the tangent and binormal are “well behaved”
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• All remaining arithmetic can be evaluated with 
register combiners (not important these days)

• Minor limitation:  as with object space per-vertex 
lighting, you can’t have a non-uniform scale 
without requiring a per-normal transform and 
renormalize

• don’t do lots of non-uniform scaling -- it won’t behave correctly

Tangent and Binormal

• Whether we implement per-pixel lighting in 
surface-local space or eye space, the tangent and 
binormal vectors need to be well-behaved from 
vertex to vertex 
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• Specifically, 
and

T1

T2

B2B1

  1,, 21 TTalerp

  1,, 21 BBalerp

T1

T2
B2

B1

good bad

Tangent and Binormal (2)

• Another way to look at the problem case:

T

B1
x-x

y
surface-local space 
for vertex 1

l1l1
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T1

T2
B2

x

x-x

-y

-y

y surface-local space 
for vertex 2

l2l2
The vectors we 
interpolate over 
the polygon are:

very 
denormalized
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-y

y

x

l1l1

l2l2

Tangent and Binormal (3)

• In the previous case, we considered transforming the 
light into the surface-local space of each vertex and 
interpolating it for the per-pixel light vector -- this is 
what we would do for GeForce2 (old GPUs)

With modern GPus we can interpolate the 3x3 matrix
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• With modern GPus, we can interpolate the 3x3 matrix 
over the surface and transform the normals by it – for 
this case if the tangent and binormal are not well-
behaved, other anomalous behavior will result

• Normal “twisting”

• Incorrect bump scale/smoothing

• The interpolated matrix should be “nearly orthonormal”

Questions?

Cass Everitt

cass@nvidia.com

www.nvidia.com/Developer
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