
1

Cg Hacking

Environment Mapping

2

Computing Reflection Vectors

Assumptions?

Computing Reflection Vectors

3

Computing Reflection Vectors

• reflect(I, N)
– Returns the reflected vector for the incident ray I and the surface normal N . The vector N

should be normalized. The reflected vector's length is equal to the length of I . This function
is valid only for three-component vectors.

Though you are better off using the Cg Standard Library routine because of its efficiency,
the straightforward implementation of reflect is as follows:

float3 reflect (float3 I, float3 N)

{

return I - 2.0 * N * dot(N, I);

}

Cg Environment Mapping

Vertex Program
– transforming the position into clip space
– passing through the texture coordinate set for the

decal texture.
– computes the incident and reflected rays.

Fragment Program
– reflected ray looks up the environment map
– uses it to add a reflection to the fragment's final color.
– blend the reflection with a decal texture.
– A uniform parameter called reflectivity allows the

application to control how reflective the material is.

4

Transforming the Vectors into
World Space

Environment maps are typically oriented relative to world space, so you need to calculate the reflection
vector in world space (or whatever coordinate system orients the environment map). To do that,
you must transform the rest of the vertex data into world space.

– Assume:
• the modeling transform is affine (rather than projective)
• uniform in its scaling (rather than nonuniformly scaling x, y, and z)
• w component of position is 1

float3 positionW = mul(modelToWorld, position).xyz;
float3 N = mul((float3x3)modelToWorld, normal);

If the modeling transform scales positions nonuniformly, you must multiply normal by the inverse
transpose of the modeling matrix (modelToWorldInvTrans), rather than simply by modelToWorld
. That is:

float3 N = mul ((float3x3)modelToWorldInvTrans, normal);

If the modeling transform is projective or the w component of the object-space position is not 1, you
must divide positionW by its w component. That is:

positionW /= positionW.w;

Incident / Reflection Vectors

The incident vector is the vector from the eye to the vertex (whereas
the view vector is from the vertex to the eye). With the world-space
eye position (eyePositionW) available as a uniform parameter and
the world-space vertex position (positionW) available from the
previous step, calculating the incident vector is a simple subtraction:

float3 I = positionW – eyePositionW;

You now have the vectors you need—the position and normal, both in
world space—so you can calculate the reflection vector:

float3 R = reflect(I, N);

5

Word about normalization
The vertex normal needs to be normalized:

N = normalize(N);

Note: In certain cases, we can skip this normalize function call. If we know that the upper 3x3 portion
of the modelToWorld matrix causes no nonuniform scaling and the object-space normal
parameter is guaranteed to be already normalized, the normalize call is unnecessary.

Why normalize I or R ?
Normalization is not needed here because the reflected vector is used to query a cube map. The
direction of the reflected vector is all that matters when accessing a cube map. Regardless of its
length, the reflected ray will intersect the cube map at exactly the same location.

And because the reflect function outputs a reflected vector that has the same length as the incident
vector as long as N is normalized, the incident vector's length doesn't matter either in this case.

There is one more reason not to normalize R . The rasterizer interpolates R prior to use by the
fragment program in the next example. This interpolation is more accurate if the per-vertex
reflection vector is not normalized.

Vertex Program
void C7E1v_reflection(float4 position : POSITION,

float2 texCoord : TEXCOORD0,
float3 normal : NORMAL,

out float4 oPosition : POSITION,
out float2 oTexCoord : TEXCOORD0,
out float3 R : TEXCOORD1,

uniform float3 eyePositionW,
uniform float4x4 modelViewProj,
uniform float4x4 modelToWorld)

{

oPosition = mul(modelViewProj, position);
oTexCoord = texCoord;

// Compute position and normal in world space

float3 positionW = mul(modelToWorld, position).xyz;

float3 N = mul((float3x3)modelToWorld, normal);

N = normalize(N);

// Compute the incident and reflected vectors

float3 I = positionW – eyePositionW;

R = reflect(I, N);

}

6

Fragment Program
void C7E2f_reflection(float2 texCoord : TEXCOORD0,

float3 R : TEXCOORD1,

out float4 color : COLOR,

uniform float reflectivity,
uniform sampler2D decalMap,
uniform samplerCUBE environmentMap)

{

// Fetch reflected environment color

float4 reflectedColor = texCUBE(environmentMap, R);

// Fetch the decal base color

float4 decalColor = tex2D(decalMap, texCoord);

color = lerp(decalColor, reflectedColor, reflectivity);

}

Vertex vs. Fragment Program
You could achieve higher image quality by using the fragment program (instead of the

vertex program) to calculate the reflected vector. Why is this? It is for the same
reason that per-fragment lighting looks better than per-vertex lighting.

As with specular lighting, the reflection vector for environment mapping varies in a
nonlinear way from fragment to fragment. This means that linearly interpolated per-
vertex values will be insufficient to capture accurately the variation in the reflection
vector. In particular, subtle per-vertex artifacts tend to appear near the silhouettes of
objects, where the reflection vector changes rapidly within each triangle. To obtain
more accurate reflections, move the reflection vector calculation to the fragment
program. This way, you explicitly calculate the reflection vector for each fragment
instead of interpolating it.

Despite this additional accuracy, per-fragment environment mapping may not improve
image quality enough to justify the additional expense. As explained earlier in the
chapter, most people are unlikely to notice or appreciate the more correct reflections
at glancing angles. Keep in mind that environment mapping does not generate
physically correct reflections to begin with.

7

Demo

Refractive Environment Mapping

Trivial now!
Snell's Law describes what happens to light at a boundary (or interface, as such boundaries are called in the context of refraction) between two

media. The refracted vector is represented by T, which stands for "transmitted."

8

Refractive Environment Mapping

Snell's Law yourself, because Cg has a refract function that will do it for you.
Here is the function definition:

refract(I, N, etaRatio) Given incident ray direction I , surface normal N , and
relative index of refraction etaRatio
The vector N should be normalized.
The refracted vector's length is equal to the length of I .
etaRatio is the ratio of the index of refraction in the medium containing the
incident ray to that of the medium being entered.
This function is valid only for three-component vectors.

Refraction

float3 refract (float3 I, float3 N, float etaRatio)

{

float cosI = dot(-I, N);

float cosT2 = 1.0f - etaRatio * etaRatio * (1.0f – cosI * cosI);

float3 T = etaRatio * I + ((etaRatio * cosI - sqrt(abs(cosT2))) * N);

return T * (float3)(cosT2 > 0);

}

9

Vertex Program
void C7E3v_refraction(float4 position : POSITION,

float2 texCoord : TEXCOORD0,
float3 normal : NORMAL,

out float4 oPosition : POSITION,
out float2 oTexCoord : TEXCOORD0,
out float3 T : TEXCOORD1,

uniform float etaRatio,
uniform float3 eyePositionW,
uniform float4x4 modelViewProj,
uniform float4x4 modelToWorld)

{

oPosition = mul(modelViewProj, position);
oTexCoord = texCoord;

// Compute position and normal in world space

float3 positionW = mul(modelToWorld, position).xyz;

float3 N = mul((float3x3)modelToWorld, normal);

N = normalize(N);

// Compute the incident and refracted vectors

float3 I = normalize (positionW – eyePositionW);

T = refract(I, N, etaRatio);

}

Fragment Program (same)
void C7E2f_refraction(float2 texCoord : TEXCOORD0,

float3 R : TEXCOORD1,

out float4 color : COLOR,

uniform float transmittance,
uniform sampler2D decalMap,
uniform samplerCUBE environmentMap)

{

// Fetch refracted environment color

float4 refractedColor = texCUBE(environmentMap, R);

// Fetch the decal base color

float4 decalColor = tex2D(decalMap, texCoord);

color = lerp(decalColor, refractedColor, transmittance);

}

10

Demo

Fresnel Effect

Fresnel Effect: when light reaches an interface
between two materials, some light reflects off the
surface at the interface, and some refracts
through the surface.

Fresnel equations describe how much light is
reflected and how much is refracted.

Fish and reflection
The Fresnel equations, which quantify the Fresnel

effect, are complicated.
So?

11

Fresnel Effect

Instead of using the equations themselves, we are
going to use the empirical approximation:

when I and N are nearly coincident, the reflection
coefficient should be 0 or nearly 0
[Mostly Refraction]

As I and N diverge, the reflection coefficient should
gradually increase and eventually abruptly
increase (due to the exponentiation) to 1
[Mostly Reflection]

The range of the reflection coefficient is clamped to the
range [0, 1], because we use the reflection coefficient to
mix the reflected and refracted contributions according to
the following formula (where C stands for color):

CFinal = reflectionCoefficient x CReflected + (1 -reflectionCoefficient) x CRefracted

12

Chromatic Dispersion

Chromatic Dispersion

TRed = refract(I, N, etaRatio.x);

TGreen = refract(I, N, etaRatio.y);

TBlue = refract(I, N, etaRatio.z);

13

Demo

