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Cg Hacking

Environment Mapping
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Computing Reflection Vectors 

Assumptions?

Computing Reflection Vectors 
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Computing Reflection Vectors 

• reflect(I, N) 
– Returns the reflected vector for the incident ray I and the surface normal N . The vector N 

should be normalized. The reflected vector's length is equal to the length of I . This function 
is valid only for three-component vectors.

Though you are better off using the Cg Standard Library routine because of its efficiency, 
the straightforward implementation of reflect is as follows:

float3 reflect (float3  I, float3 N)

{

return I - 2.0 * N * dot(N, I);

}

Cg Environment Mapping

Vertex Program
– transforming the position into clip space 
– passing through the texture coordinate set for the 

decal texture.
– computes the incident and reflected rays. 

Fragment Program
– reflected ray looks up the environment map 
– uses it to add a reflection to the fragment's final color. 
– blend the reflection with a decal texture. 
– A uniform parameter called reflectivity allows the 

application to control how reflective the material is.
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Transforming the Vectors into 
World Space 

Environment maps are typically oriented relative to world space, so you need to calculate the reflection 
vector in world space (or whatever coordinate system orients the environment map). To do that, 
you must transform the rest of the vertex data into world space.

– Assume:
• the modeling transform is affine (rather than projective) 
• uniform in its scaling (rather than nonuniformly scaling x, y, and z)
• w component of position is 1

float3 positionW = mul(modelToWorld, position).xyz;
float3 N = mul((float3x3)modelToWorld, normal);

If the modeling transform scales positions nonuniformly, you must multiply normal by the inverse 
transpose of the modeling matrix ( modelToWorldInvTrans ), rather than simply by modelToWorld
. That is:

float3  N = mul ((float3x3)modelToWorldInvTrans, normal);

If the modeling transform is projective or the w component of the object-space position is not 1, you 
must divide positionW by its w component. That is:

positionW /= positionW.w;

Incident / Reflection Vectors

The incident vector is the vector from the eye to the vertex (whereas 
the view vector is from the vertex to the eye). With the world-space 
eye position ( eyePositionW ) available as a uniform parameter and 
the world-space vertex position ( positionW ) available from the 
previous step, calculating the incident vector is a simple subtraction:

float3 I = positionW – eyePositionW;

You now have the vectors you need—the position and normal, both in 
world space—so you can calculate the reflection vector:

float3 R = reflect(I, N);
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Word about normalization
The vertex normal needs to be normalized:

N = normalize(N);

Note: In certain cases, we can skip this normalize function call. If we know that the upper 3x3 portion 
of the modelToWorld matrix causes no nonuniform scaling and the object-space normal 
parameter is guaranteed to be already normalized, the normalize call is unnecessary.

Why normalize I or R ?
Normalization is not needed here because the reflected vector is used to query a cube map. The 
direction of the reflected vector is all that matters when accessing a cube map. Regardless of its 
length, the reflected ray will intersect the cube map at exactly the same location.

And because the reflect function outputs a reflected vector that has the same length as the incident 
vector as long as N is normalized, the incident vector's length doesn't matter either in this case.

There is one more reason not to normalize R . The rasterizer interpolates R prior to use by the 
fragment program in the next example. This interpolation is more accurate if the per-vertex 
reflection vector is not normalized.

Vertex Program
void  C7E1v_reflection(float4  position : POSITION,

float2 texCoord : TEXCOORD0, 
float3 normal : NORMAL,

out float4 oPosition : POSITION, 
out float2 oTexCoord : TEXCOORD0,
out float3 R         : TEXCOORD1,

uniform float3   eyePositionW,
uniform float4x4 modelViewProj, 
uniform float4x4 modelToWorld)

{

oPosition = mul(modelViewProj, position);
oTexCoord = texCoord;

// Compute position and normal in world space

float3 positionW = mul(modelToWorld, position).xyz;

float3 N = mul((float3x3)modelToWorld, normal);

N = normalize(N);

// Compute the incident and reflected vectors

float3 I = positionW – eyePositionW;

R = reflect(I, N);

}
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Fragment Program
void  C7E2f_reflection(float2 texCoord : TEXCOORD0,

float3 R        : TEXCOORD1,

out float4 color : COLOR,

uniform float reflectivity,
uniform sampler2D decalMap,
uniform samplerCUBE environmentMap)

{

// Fetch reflected environment color

float4 reflectedColor = texCUBE(environmentMap, R);

// Fetch the decal base color

float4 decalColor = tex2D(decalMap, texCoord);

color = lerp(decalColor, reflectedColor, reflectivity);

}

Vertex vs. Fragment Program 
You could achieve higher image quality by using the fragment program (instead of the 

vertex program) to calculate the reflected vector. Why is this? It is for the same 
reason that per-fragment lighting looks better than per-vertex lighting.

As with specular lighting, the reflection vector for environment mapping varies in a 
nonlinear way from fragment to fragment. This means that linearly interpolated per-
vertex values will be insufficient to capture accurately the variation in the reflection 
vector. In particular, subtle per-vertex artifacts tend to appear near the silhouettes of 
objects, where the reflection vector changes rapidly within each triangle. To obtain 
more accurate reflections, move the reflection vector calculation to the fragment 
program. This way, you explicitly calculate the reflection vector for each fragment 
instead of interpolating it.

Despite this additional accuracy, per-fragment environment mapping may not improve 
image quality enough to justify the additional expense. As explained earlier in the 
chapter, most people are unlikely to notice or appreciate the more correct reflections 
at glancing angles. Keep in mind that environment mapping does not generate 
physically correct reflections to begin with.
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Demo

Refractive Environment Mapping 

Trivial now!
Snell's Law describes what happens to light at a boundary (or interface, as such boundaries are called in the context of refraction) between two 

media. The refracted vector is represented by T, which stands for "transmitted." 
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Refractive Environment Mapping

Snell's Law yourself, because Cg has a refract function that will do it for you. 
Here is the function definition:

refract(I, N, etaRatio)  Given incident ray direction I , surface normal N , and 
relative index of refraction etaRatio
The vector N should be normalized. 
The refracted vector's length is equal to the length of I . 
etaRatio is the ratio of the index of refraction in the medium containing the 
incident ray to that of the medium being entered. 
This function is valid only for three-component vectors.

Refraction

float3 refract (float3  I, float3  N, float etaRatio)

{

float cosI = dot(-I, N);

float cosT2 = 1.0f - etaRatio * etaRatio * (1.0f – cosI * cosI);

float3 T = etaRatio * I + ((etaRatio * cosI - sqrt(abs(cosT2))) * N);

return T * (float3)(cosT2 > 0);

}
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Vertex Program
void  C7E3v_refraction(float4  position : POSITION, 

float2  texCoord : TEXCOORD0,
float3  normal   : NORMAL,

out float4 oPosition : POSITION,
out float2 oTexCoord : TEXCOORD0,
out float3 T         : TEXCOORD1,

uniform float etaRatio,
uniform float3 eyePositionW,
uniform float4x4 modelViewProj,
uniform float4x4 modelToWorld)

{

oPosition = mul(modelViewProj, position);
oTexCoord = texCoord;

// Compute position and normal in world space

float3 positionW = mul(modelToWorld, position).xyz;

float3 N = mul((float3x3)modelToWorld, normal);

N = normalize(N);

// Compute the incident and refracted vectors

float3 I = normalize (positionW – eyePositionW);

T = refract(I, N, etaRatio);

}

Fragment Program (same)
void  C7E2f_refraction(float2 texCoord : TEXCOORD0,

float3 R        : TEXCOORD1,

out float4 color : COLOR,

uniform float transmittance,
uniform sampler2D decalMap,
uniform samplerCUBE environmentMap)

{

// Fetch refracted environment color

float4 refractedColor = texCUBE(environmentMap, R);

// Fetch the decal base color

float4 decalColor = tex2D(decalMap, texCoord);

color = lerp(decalColor, refractedColor, transmittance);

}
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Demo

Fresnel Effect

Fresnel Effect: when light reaches an interface 
between two materials, some light reflects off the 
surface at the interface, and some refracts 
through the surface. 

Fresnel equations describe how much light is 
reflected and how much is refracted.

Fish and reflection
The Fresnel equations, which quantify the Fresnel 

effect, are complicated.  
So?
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Fresnel Effect

Instead of using the equations themselves, we are 
going to use the empirical approximation:

when I and N are nearly coincident, the reflection 
coefficient should be 0 or nearly 0                        
[ Mostly Refraction]

As I and N diverge, the reflection coefficient should 
gradually increase and eventually abruptly 
increase (due to the exponentiation) to 1             
[ Mostly Reflection]

The range of the reflection coefficient is clamped to the 
range [0, 1], because we use the reflection coefficient to 
mix the reflected and refracted contributions according to 
the following formula (where C stands for color):

CFinal = reflectionCoefficient x CReflected + (1 -reflectionCoefficient) x CRefracted
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Chromatic Dispersion 

Chromatic Dispersion

TRed = refract(I, N, etaRatio.x);

TGreen = refract(I, N, etaRatio.y);

TBlue = refract(I, N, etaRatio.z);
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Demo


