
1

Cg Hacking

Toon Shading

2

Toon Shading

Your toon shader has three main components:

1. The diffuse shading needs to be represented by just
two values: one for bright regions, and another for
dark regions.

2. Specular highlights need to be identified and
represented as a single color where their intensity is
sufficiently high.

3. Objects need to be outlined to complete the cartoon
look.

Toon Shading 1. Diffuse Shading

Vertex Prog:
diffuseLight = max(dot(N, L), 0);

Frag Prog:
diffuseLighting = tex1D(diffuseRamp, diffuseLight);

3

Toon Shading 2. Specular Highlights

Vert Prog
// Calculate specular lighting
float3 V = normalize(eyePosition - position.xyz);
float3 H = normalize(L + V);
specularLight = pow(max(dot(N, H), 0), shininess);

Frag Prof:
specularLighting = tex1D(diffuseRamp, specularLight);

Toon Shading 3. Silhouette Outlining

// Calculate edge color

float edge = max(dot(N, V), 0);

edge = tex1D(edgeRamp, edge);

Only works for curved surfaces.

4

Demo

Shadow Mapping

Shadow mapping is a two-pass technique:
1. The scene is rendered from the light's point of view. The

depth at each pixel of the resulting image is recorded in a
"depth texture." (the shadow map.)

2. Next, the scene is rendered from the eye position, but with
the shadow map projected down from the light onto the
scene using standard projective texturing. At each pixel, the
depth sample (from the projected shadow map texture) is
compared with the fragment's distance from the light. If the
latter is greater, the pixel is not the closest surface to the
light source. This means that the fragment is shadowed, and
that it should not receive light during shading.

3. The shadow map is indexed using (s/q, t/q). Because the light
source is the center of projection for the shadow map, r/q
holds the distance from the light. Therefore, by comparing
the shadow map texel depth at (s/q, t/q) with r/q, you can
determine if the current pixel is lit or in shadow.

5

Shadow Mapping
tex2Dproj: returns a four-component vector

(c, c, c, 1), where
c is 0 if the pixel is in shadow
1 if the pixel is lit.

You can then treat this vector as a color.

If bilinear texture filtering is enabled, c will range from
0 to 1 instead of being restricted to just the two
values.

Shadow Mapping

Setup the texture matrix:

Vert Prog (use it)
float4 texCoordProj = mul(textureMatrix, position);

6

Shadow Mapping

Frag Prog:

tex2Dproj:
divides the s and t texture coordinates by the q texture coordinate

Use it:
float4 textureColor = tex2Dproj(projTexture, texCoordProj);

Demo

