Blending

Learn to use the A component in RGBA
Blending color for

- Blending for translucent surfaces

» - Compositing images

* - Antialiasing

SR ElTe W) Physically Correct Translucency

)) Dealing with translucency in a physically correct manner is
Opaque surfaces permit no light to pass through difficult due to
. . + Th lexity of the int | interacti f light and
« Transparent surfaces permit all light to pass A S
* Translucent Surfaces pass some ||ght « Limitations of fixed-pipeline rendering w/ State Machine

translucency = 1 — opacity (a)

Window Transparency Window Transparency

* Look out a window 1. - * Look out a window 1. -

* What’s wrong with that?

Window Transparency

* Look out a window

Example

Compositing
* Back to Front
Cout = (1 —)Cin + acCc

* Front to Back

Cout = Cin + Ccac (1 - ain)

Aout = iy + Q. (1 — ain)

Screen Door Transparency

glEnableGL_POLYGON_STIPPLE(GL_POLYGON_STIPPLE)

Frame Buffer (assuming 32-bits)
— Simple color model: R, G, B; 8 bits each
— a-channel A, another 8 bits
Alpha determines opacity, pixel-by-pixel
— o = 1: opaque
— a = 0: transparent
— 0 < a < 1: translucent
» Blend translucent objects during rendering

» Achieve other effects (e.g., shadows)

Blending

* Combine fragments with pixel values that
are already in the framebuffer
glBlendFunc(src, dst)

C. =srcC ¢ +dst C £

Blending

» Blending operation
—Source: s = [s, 54 S}, S,
— Destination: d = [d, d, d,, d,]

—b = [b, by b, b,] source blending factors
- ¢ = [c, ¢4 ¢, ¢,] destination blending factors
—d’ =[bs, +cd, , bgsy +cyd, ,byS, + Codp ,b,S, + Cod,]

Blending

GEL_ONE_MINUS_SECI_ALPIIA

glBlendEquation(...)
glBlendEqationSeparate(...)

GL_FUNC_ADD
GL_FUNC_SUBTRACT
GL_REVERSE_SUBTRACT

OpenGL Blending and Compositing

* Must enable blending and pick source and
destination factors

glEnable(GL_BLEND)

glBlendFunc(srcFactor, destFactor)
glBlendFuncSeparate(

srcRGB, destRGB, srcAlpha, destAlpha)

woid giBlendColorGLelampd red, GLolampl gree, GLolmpl e,
GLefampd alpia)

Sets the cutrent rod, e, green, and afphat values for e a3 the constant
color (R, Gy, B, A} in blending operations.

L_ONE_MINUS_SRC1_COLOR
SHC1_ALPHA

GEL_ONE_MINUS_SECI_ALPIIA

Blending Errors

Operations are not commutative (order!)
Operations are not idempotent

Limited dynamic range

Interaction with hidden-surface removal

— Polygon behind opaque one should be hidden
— Translucent in front of others should be composited

—Show of the problem
— Solution?

Blending Errors Blending Errors

* [nteraction with hidden-surface

removal

— Disable Z-test?

— 2 polys: red (front) and blue (behind) on
green background, 50% transparency
1. Render background
2. Render red poly
3. Render blue poly
What happens (z-test enabled)?

* Interaction with hidden-surface

removal
— Draw Opaque geom first, then semi-
transparent
— Use Alpha test:
glAlphaFunc(GL_GREATER, 0.1)
glEnable(GL_ALPHA_TEST)

Blending Errors

Blending Errors

* |Interaction with hidden-surface

removal

— Disable Z-test?

— 2 polys: red (front) and blue (behind) on
green background, 50% transparency
1. Render background
2. Render red poly
3. Render blue poly
What happens (z-test disabled)?

» |Interaction with hidden-surface

removal

— Disable Z-test?

— 2 polys: red (front) and blue (behind) on
green background, 50% transparency
1. Render background
2. Render blue poly
3. Render red poly
What happens (z-test enabled)?

Blending Errors Blending Errors

* Interaction with hidden-surface * Interaction with hidden-surface removal
— Polygon behind opaque one should be hidden

removal
— Translucent in front of others should be composited

— Disable Z-test? .
. . — Solution?
- 2 polys. red (front) and blue (behlnd) on » Two passes using alpha testing (glAlphaFunc): 1st pass

green background, 50% transparency « alpha=1 accepted, and 2nd pass alpha<1 accepted
» make z-buffer read-only for translucent polygons (alpha<1)

1. Render background

2. Render blue poly with glDepthMask(GL_FALSE);
3. Render red poly

What happens (z-test disabled)?

Sorting

* General Solution?

— Just sort polygons
* Which Space?

Correct

Magenta
Yellow
Gray
Cyan

Sorting Image Dissolve?

General Solution?

— Just sort polygons
* Which Space?
— What About?

* How to do it?

— Depth Peeling

Sorting

Antialiasing
General Solution? * Removing the Jaggies
— Just sort polygons

glEnable (mode)
* Which Space? «GL POINT SMOOTH
— What About? - GL_LINE_SMOOTH
- GL_POLYGON_SMOOTH

— alpha value computed by computing
sub-pixel coverage

— available in both RGBA and colormap modes

(=

— Depth Peeling (Next Time: Read the papers)

Antialiasing Revisited

Single-polygon case first

Set o value of each pixel to covered
fraction

Use destination factor of “1 — o”

Use source factor of “o”

This will blend background with foreground
Overlaps can lead to blending errors

Antialiasing with Multiple Polygons

Now assume overlap (case b)

Average overlap is a;a,
Soay=a;+a,—aa,

Make front/back decision for color as usual

Antialiasing in OpenGL

Avoid explicit a-calculation in program
Enable both smoothing and blending

glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

Can also hint about quality vs performance
using glHint(...)

Antialiasing with Multiple Polygons

Initially, background color C,, a; =0
Render first polygon; color C, fraction o4

= Cy=(1-04)Co + 04C4

— Og = 0y

Render second polygon; assume fraction o,
If no overlap (case a), then

= Cy=(1-0ay)Cq + aCy

—dg=ayta,

Depth Cueing and Fog

= Another application of blending

+ Use distance-dependent (z) blending
- Linear dependence: depth cueing effect
— Exponential dependence: fog effect
— This is not a physically-based model

Example: Fog

* Fog in RGBA mode:
C =1C,+ (1-f)C, [OBz dwatyecs

XGL._I:XPQ. dengity=0.25

—f : depth-dependent fog factor

 GLLINEAR
GL_EXP, donsity=0.25
e
GL_EXP, density=0.5

[Example: Fog Tutor]

Depth Cue via Fog

Example: Depth Cue

