OpenGL Terminology

- What is OpenGL?
- How are objects represented?
- What’s a Fragment?
- What’s a buffer?
 - How many and name them?
- What’s a texture?

OpenGL Pipeline

Blending

Learn to use the A component in RGBA color for
- Blending for translucent surfaces
- Compositing images
- Antialiasing

Opacity and Transparency

Opaque surfaces permit no light to pass through
- Transparent surfaces permit all light to pass
- Translucent surfaces pass some light
 translucency = 1 – opacity (α)

Physically Correct Translucency

Dealing with translucency in a physically correct manner is difficult due to
- The complexity of the internal interactions of light and matter
- Limitations of fixed-pipeline rendering w/ State Machine
Window Transparency

• Look out a window

• What’s wrong with that?

Screen Door Transparency

• glEnable(GL_POLYGON_STIPPLE(GL_POLYGON_STIPPLE))

Example

• Example 1
• Example 2

- Frame Buffer (assuming 32-bits)
 - Simple color model: R, G, B; 8 bits each
 - α-channel A, another 8 bits
- Alpha determines opacity, pixel-by-pixel
 - \(\alpha = 1 \): opaque
 - \(\alpha = 0 \): transparent
 - \(0 < \alpha < 1 \): translucent
- Blend translucent objects during rendering
- Achieve other effects (e.g., shadows)
Compositing

- Back to Front
 \[C_{out} = (1 - \alpha_c)C_{in} + \alpha_c C_c \]
- Front to Back
 \[C_{out} = C_{in} + \alpha_c \alpha (1 - \alpha_{in}) \]
 \[\alpha_{out} = \alpha_{in} + \alpha_c (1 - \alpha_{in}) \]

Blending

- Blending operation
 - Source: \(s = [s_r, s_g, s_b, s_a] \)
 - Destination: \(d = [d_r, d_g, d_b, d_a] \)
 - \(b = [b_r, b_g, b_b, b_a] \) source blending factors
 - \(c = [c_r, c_g, c_b, c_a] \) destination blending factors
 - \(d' = \{b_r s_r + c_r d_r, b_g s_g + c_g d_g, b_b s_b + c_b d_b, b_a s_a + c_a d_a\} \)

OpenGL Blending and Compositing

- Must enable blending and pick source and destination factors
 - \(\text{glEnable}(ext{GL_BLEND}) \)
 - \(\text{glBlendFunc}(\text{source_factor}, \text{destination_factor}) \)
- Only certain factors supported
 - \(\text{GL_ZERO, GL_ONE} \)
 - \(\text{GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA} \)
 - \(\text{GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA} \)
 - See Red Book for complete list

Camera Input:

- Combine fragments with pixel values that are already in the framebuffer
 \[\bar{c}_v = \text{src} \bar{c}_v + \text{dst} \bar{c}_p \]
 - \(\text{glBlendEquation(…)} \)
 - \(\text{GL_FUNC_ADD} \)
 - \(\text{GL_FUNC_SUBTRACT} \)
 - \(\text{GL_REVERSE_SUBTRACT} \)
 - \(\text{GL_MIN} \)
 - \(\text{GL_MAX} \)
Blending Errors

- Operations are not commutative (order!)
- Operations are not idempotent
- Limited dynamic range
- Interaction with hidden-surface removal
 - Polygon behind opaque one should be hidden
 - Translucent in front of others should be composited
 - Show Demo of the problem
 - Solution?

Blending Errors

- Interaction with hidden-surface removal
 - Draw Opaque geom first, then semi-transparent
 - Use Alpha test:
 - glAlphaFunc(GL_GREATER, 0.1)
 - glEnable(GL_ALPHA_TEST)

Blending Errors

- Interaction with hidden-surface removal
 - Disable Z-test?
 - 2 polys: red (front) and blue (behind) on green background, 50% transparency
 1. Render background
 2. Render red poly
 3. Render blue poly
 What happens (z-test enabled)?

Blending Errors

- Interaction with hidden-surface removal
 - Disable Z-test?
 - 2 polys: red (front) and blue (behind) on green background, 50% transparency
 1. Render background
 2. Render blue poly
 3. Render red poly
 What happens (z-test disabled)?

Blending Errors

- Interaction with hidden-surface removal
 - Disable Z-test?
 - 2 polys: red (front) and blue (behind) on green background, 50% transparency
 1. Render background
 2. Render blue poly
 3. Render red poly
 What happens (z-test disabled)?
Blending Errors

- Interaction with hidden-surface removal
 - Polygon behind opaque one should be hidden
 - Translucent in front of others should be composited
- Solution?
 - Two passes using alpha testing (glAlphaFunc): 1st pass
 - alpha=1 accepted, and 2nd pass alpha<1 accepted
 - make z-buffer read-only for translucent polygons (alpha<1) with
 glDepthMask(GL_FALSE);
 - Demo

Sorting

- General Solution?
 - Just sort polygons
 - Which Space?

Sorting

- General Solution?
 - Just sort polygons
 - Which Space?
 - What About?
 - Depth Peeling

Image Dissolve?

- How to do it?
Depth Peeling Shaders

http://code.google.com/p/cuda-ldi/source/browse/trunk/src/depth_peeling/?r=17

Dual Depth Peeling

• Reduce number of passes by processing both front and back at the same time

![Figure 3. Dual depth peeling advancing fronts.](image)

Antialiasing

• Removing the Jaggies

 glEnable(mode)
 - GL_POINT_SMOOTH
 - GL_LINE_SMOOTH
 - GL_POLYGON_SMOOTH
 – alpha value computed by computing sub-pixel coverage
 – available in both RGBA and colormap modes

Antialiasing Revisited

• Single-polygon case first
 • Set \(\alpha \) value of each pixel to covered fraction
 • Use destination factor of \(“1 – \alpha” \)
 • Use source factor of \(\alpha \)
 • This will blend background with foreground
 • Overlaps can lead to blending errors

Antialiasing with Multiple Polygons

• Initially, background color \(C_0 \), \(a_0 = 0 \)
 • Render first polygon; color \(C_1 \) fraction \(\alpha_1 \)
 - \(C_d = (1 - \alpha_1)C_0 + \alpha_1C_1 \)
 - \(a_d = \alpha_1 \)
 • Render second polygon; assume fraction \(\alpha_2 \)
 • If no overlap (case a), then
 - \(C'_d = (1 - \alpha_2)C_0 + \alpha_2C_2 \)
 - \(a'_d = \alpha_1 + \alpha_2 \)

Antialiasing with Multiple Polygons

• Now assume overlap (case b)
 • Average overlap is \(a_1a_2 \)
 • So \(a_2 = a_1 + a_2 - a_1a_2 \)
 • Make front/back decision for color as usual
Antialiasing in OpenGL

- Avoid explicit α-calculation in program
- Enable both smoothing and blending

  ```
  glEnable(GL_POINT_SMOOTH);
  glEnable(GL_LINE_SMOOTH);
  glEnable(GL_BLEND);
  glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  ```
- Can also hint about quality vs performance using `glHint(...)`

Depth Cueing and Fog

- Another application of blending
- Use distance-dependent (z) blending
 - Linear dependence: depth cueing effect
 - Exponential dependence: fog effect
 - This is not a physically-based model

Example: Fog

- Fog in RGBA mode:
 \[C = fC_I + (1-f)C_{I} \]
 - f: depth-dependent fog factor

  ```
  GLfloat color4[] = {...};
  glEnable(GL_FOG);
  glFogf(GL_FOG_MODE, GL_EXP);
  glFogf(GL_FOG_DENSITY, 6.5);
  glFogfv(GL_FOG_COLOR, color4);
  ```

Depth Cue via Fog
Example: Depth Cue

Example

Exa