Radiosity

Not
Radio City

Radiosity

- Equilibrium of energy balances within an enclosure.
- Based on radiative heat transfer (thermodynamics)

What is Radiosity?

The radiosity of a surface is the rate at which energy leaves that surface (energy per unit time per unit area). It includes the energy emitted by a surface as well as the energy reflected from other surfaces.

Techniques of modeling the transfer of energy between surfaces based upon radiosity were first used in analyzing heat transfer between surfaces in an enclosed environment. The same techniques can be used to analyze the transfer of radiant energy between surfaces in computer graphics.

Radiosity methods allow the intensity of radiant energy arriving at a surface to be computed. These intensities can then be used to determine the shading of the surface.

Slide 25 : Steel Mill.
This image of a steel rolling mill was created using progressive radiosity. The original model contains about 30,000 polygons, which were subdivided into about 55,000 elements during the solution. It was computed on a DEC VAX 8700 and displayed using a Hewlett-Packard SRX graphics device.

Diffuse surfaces have one radiance (color) for all viewing directions

Radiosity reciprocity relation

$$
A_{i} F_{i j}=A_{j} F_{j i}
$$

Radiosity reciprocity relation

$$
\begin{gathered}
A_{i} F_{i j}=A_{j} F_{j i} \\
H_{i}=\sum_{j=1}^{N} B_{j} \frac{A_{j} F_{j i}}{A_{i}} H_{i}=\sum_{j=1}^{N} B_{j} \frac{A_{i} F_{i j}}{A_{i}}
\end{gathered}
$$

Radiosity reciprocity relation
$A_{i} F_{i j}=A_{j} F_{j i}$.
$H_{i}=\sum_{j=1}^{N} B_{j} \frac{A_{j} F_{j i}}{A_{i}} H_{i}=\sum_{j=1}^{N} B_{j} \frac{A_{i} F_{i j}}{A_{i}}$

Radiosity reciprocity relation

$$
A_{i} F_{i j}=A_{j} F_{j i}
$$

$$
H_{i}=\sum_{j=1}^{N} B_{j} \frac{A_{j} F_{j i}}{A_{i}} H_{i}=\sum_{j=1}^{N} B_{j} \longrightarrow F_{i j}
$$

Radiosity Enclusures

Simple Room Scene

Table in room sequence from Cohen and Wallace
CS348B Lecture 17 Pat Hanrahan, Spring 2002

How Does OpenGL Fit In?

Hemicube Delta Form Factors

Distributing the Energy

- Solve linear system
- Diagonal dominant
- Use Gauss-Seidel or other method
- Hierarchical methods
- Do interaction between 2 far-away groups of patches all at once

Hierarchical Radiosity

Artifacts

Error Image
A. Blocky shadows
B. Missing features
C. Mach bands
D. Inappropriate shading discontinuities
E. Unresolved discontinuities
c5348B Locture 17 Pat Hanrahan, Spring 2002 02

Adaptive Meshing

Discontinuity Mesh

From Campbell et al.

Summary

Remember assumptions

- Diffuse reflectance
- Polygons

Difficult to relax assumptions

Computation challenges

- Meshing
- Complex input geometry
- Complexity due to shadows
- Dense coupling
- $O\left(n^{2}\right)$ matrix elements
- HR leads to $O(n)$ algorithm (ignoring discontinuities)

CS348B Lecture 17

OpenGL to do more?

- Relook at equations

Slide Credits

- Pat Hanrahan, Stanford CS348B
- Pete Shirley, Siggraph 98 Radiosity Course

