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Current graphics hardware can be used to generate shadows using either the shadow volume or
shadow map technique. However, the shadow volume technique requires access to a representation
of the scene as a polygonal model, and handling the near plane clip correctly and efficiently is dif-
ficult; conversely, accurate shadow maps require high-precision texture map data representations,
but these are not widely supported.

We present a hybrid of the shadow map and shadow volume approaches which does not have
these difficulties, and leverages high-performance polygon rendering. The scene is rendered from
the point of view of the light source and a sampled depth map is recovered. Edge detection and a
template-based reconstruction technique are used to generate a global shadow volume boundary
surface, after which the pixels in shadow can be marked using only a one bit stencil buffer and a
single-pass rendering of the shadow volume boundary polygons. The simple form of our template-
based reconstruction scheme simplifies capping the shadow volume after the near plane clip.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics|: Three-Dimensional Graphics
and Realism—shadowing; 1.4.8 [Image Processing and Computer Vision]: Scene Analysis—
range data

General Terms: Algorithms, Human Factors, Performance

Additional Key Words and Phrases: shadows, hardware accelerated image synthesis, illumination,
image processing.

1. INTRODUCTION

Shadows are a very important spatial cue. They help determine the relative po-
sitions of objects, particularly depth order and the height of objects above the
ground plane. Since a shadow is basically a projection of the scene from an alter-
native viewpoint, cast shadows can also elucidate the shape of an object [Wanger
1992] and the positions of light sources.

Generating shadows is a classic computer graphics problem, and considerable
research effort has been devoted to it [Crow 1977; Woo et al. 1990]. In this paper we
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focus on the simplest case: hard-edged umbral shadows cast by point sources. Given
a fast umbral shadow algorithm, soft shadows can be approximated by summing
the contributions of several such sources. However, there are severe limitations in
existing algorithms for interactive generation of even hard-edged shadows using the
current generation of hardware.

1.1 Taxonomy and Tradeoffs

Existing hard shadow algorithms can be divided into four broad categories: ray
casting, projection, shadow volumes, and shadow maps. Of these, only the last
three are (currently) applicable to real-time rendering. There are also several hybrid
algorithms that combine features from different categories.

A distinction can also be drawn between object-precision and image-precision
algorithms. Object-precision algorithms result in more precise shadows, but require
access to a polygonal representation of the scene.

Polygonal representations are not available in systems which use “alternative”
modelling and rendering techniques such as selective raycasting of objects, run-
based rendering of enumerated volumes, layered depth images, depth buffer imple-
mentation of CSG [Rossignac and Requicha 1986; Wiegand 1996, distance-volume
primitives [Westermann et al. 1999, direct rasterization of biquadratic patches,
depth shaders, adaptive isocontour tracing of parametric patches [Elber and Cohen
1994, etc.

Image-precision algorithms are less accurate but also place fewer constraints on
the scene representation. In practice, even if the scene is represented with polygons,
they can be easier to use and more flexible. For instance, many applications use
polygonal primitives but may generate them on-the-fly from other representations,
and do not maintain a polygonal database. Even if polygonal primitives are used
and can be intercepted in a non-invasive way (for example, via OpenGL feedback
[Kilgard 1997]), adjacency information (required for an important optimization
in shadow volumes, for instance) may not be available. Fortunately, for many
applications shadows do not have to be very accurate to be useful, and image-
precision algorithms can be used.

In the following sections the three classes of shadowing algorithms applicable to
real-time rendering are surveyed and compared. Our new technique is a hybrid of
the shadow volume technique and the shadow map technique.

1.2 Projection Algorithms

Projection techniques project primitives away from the light source onto the surface
of other primitives. Blinn’s “fake shadows” algorithm [Blinn 1988] squashes all
polygons in the object casting a shadow down onto the plane of another polygon,
where they can be drawn in black or composited over previously rendered pixels to
approximate a shadow of the object onto that plane. This technique is simple and
is suitable for hardware acceleration, but does not scale or generalize well.

More general object-precision projection algorithms clip polygons into shadowed
and unshadowed parts [Atherton et al. 1978; Weiler and Atherton 1977] in a prepass.
Since they use polygon clipping, these algorithms require access to a polygonal
representation of the scene.

Data structures such as BSP trees may be used to accelerate the polygon clipping
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process [Chin and Feiner 1989] and manage the selective reclipping of polygons
when objects are moved [Chrysanthou and Slater 1995]. The splitting planes of
the BSP trees in these algorithms are given by the scene polygons and the shadow
volume boundary, so these techniques are in fact hybrids of the shadow volume and
projection approaches.

The projection approach can be applied to volumetric primitives by projecting
semitransparent slices onto each other recursively [Behrens and Ratering 199§].
Projection techniques also exist for area light sources and soft shadows, in both
exact object-precision [Dretakkis and Fiume 1994; Stewart and Ghali 1994] and
approximate image-precision [Soler and Sillion 199§] forms.

1.3 Shadow Volumes

The classical shadow volume algorithm [Bergeron 1985; Bergeron 1986; Crow 1977]
requires a representation of the scene as a polygonal database, and represents the
boundary between illuminated and shadowed space with object-precision polygons.
The intersection between the boundary of the shadow volume and the scene can
be computed at image precision using per-pixel depth comparison and counting
operations.

A shadow volume boundary polygon, or shadow polygon for short, is constructed
for each edge of every object polygon in the scene. Each shadow polygon is a semi-
infinite quadrilateral with two finite vertices corresponding to each pair of edge
endpoints and two infinite vertices. The infinite vertices are placed at the limit
of rays emanating from the light source and passing through each finite vertex.
A clipper operating with homogeneous coordinates will reduce this semi-infinite
quadrilateral to a finite size when it is clipped against the viewing frustum.

The shadow polygons together with their generating object polygon enclose a
semi-infinite volume of space which is shadowed by that particular object polygon.
The union of all the shadow volumes generated by all object polygons is the shadow
volume for the scene.

Computing the union of the per-polygon shadow volumes can be done by counting
“in” and “out” events along rays from the eye. Orientation of shadow polygons
must be maintained so that the front faces of the shadow polygons point towards
illuminated space. This is necessary so “in” events can be distinguished from “out”
events. If the eye is in fully illuminated space, a ray from the eye to a point on a
surface will pierce an equal number of front facing and back facing shadow polygons
if and only if the surface point at the ray terminus is not inside the union of the
shadow volumes, i.e. is illuminated.

In an important optimization, shadow polygons originating in non-silhouette
shared object polygon edges can be removed, with the silhouette defined relative
to each light source. A flatland example of a shadow volume after such editing is
given in Figure [A.

Shared-edge shadow polygons can be removed because the orientations of such
polygons generated from shared edges between adjacent non-silhouette polygons
will be opposed and will cancel. If both open and closed (non-manifold) objects
can appear in the scene, weights must be added to the shadow volume boundary
polygons. Nonmanifold, unshared edges should always generate shadow polygons
with a weight of 1. Shadow polygons generated from shared silhouette edges should
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Fig. 1. A: The shadow volume technique. B: The shadow map technique.

be assigned a weight of 2 [Bergeron 1986].

Shadow volumes can be rendered in conjunction with scanline [Berg 985;
Bergeron 1986; Bouknight and Kelly 1970; Crow 1977], depth-buffer, and BSP

[Chrysanthou and Slater 1995] hidden-surface algorithms. Jansen and van der Zalm
[Jansen and van der Zalm 1991] show how to derive shadow volumes for objects
constructed with CSG set operators from the shadow volumes of their arguments.

To render shadows with hardware acceleration, a shadow count needs to be main-
tained per pixel by the hardware. After the eye view of the scene has been rasterized
to initialize the depth buffer, the shadow polygons are rasterized. Shadow polygon
rasterization fragments do not modify the colour or depth buffer. However, if a
shadow polygon fragment passes the depth test, the corresponding shadow count
is incremented by the weight of the front facing shadow polygons and decremented
by the weight of the back facing shadow polygons. Pixels with a shadow count of
0 at the end of this process are illuminated; the rest are in shadow.

The Pixel Planes architecture [Fuchs et al. 1985] includes support for shadow
volumes. One interesting feature of this architecture is that polygon size does not
affect performance. This is fortunate, because shadow polygons tend to be large.
In most architectures larger polygons take longer to rasterize. If the fill rate is high
relative to the vertex transformation rate, which is typical of many current low-end
systems, this dependency may not be significant.

Under OpenGL the (fixed-precision) buffer for maintaining the shadow count is
called a stencil buffer.

The shadow count for an illuminated surface, 0, is only one out of 2° possible
counts in an s-bit stencil buffer. If modular arithmetic is used, it is possible that
parts of the scene could be falsely illuminated, although improbable: a non-zero
shadow count would have to alias to 0 mod 2°.

However, the OpenGL stencil buffer clamps at both 0 and its maximum value,
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2% — 1. To avoid underflow at least two passes over the shadow volume are needed:
the front-facing (positive count) shadow polygons must be rendered first, followed
by backfacing shadow polygons. More passes are necessary if weights are used. If
overflow occurs during rendering of the front faces, illuminated parts of the scene
would be rendered correctly, since the magnitude of the negative count will be
equal to the positive count and therefore larger than 2° — 1. However, some parts
of shadow may be falsely illuminated, as some portion of the positive count might
be lost.

1.4 Shadow Maps

The shadow map technique uses a depth map generated from the point of view of
the light source. As each pixel is rendered in the eye view its three-dimensional
location is transformed back into the lighting coordinate system with a projective
transformation. The depth of this transformed point in the light source coordinate
system is compared with the stored depth. If the stored depth is smaller, there is
an occluder between the point being rendered and the light source, and the point
is in shadow.

To avoid false self-shadowing of surfaces and “surface acne”, small biases are
added to the depth comparisons. The shadow depths may also be dithered and a
soft transition to shadow may be used [Reeves et al. 1987 to simulate penumbra.

A version of this algorithm has been implemented in hardware [Segal et al. 1997].
The result of the depth comparison sets an alpha value in each pixel that can then
be used to composite illuminated and unilluminated renderings. On standard hard-
ware a similar technique can be implemented using the alpha test and projective
texturing [Heidrich 1999).

Unfortunately, the precision of values stored in texture maps is usually low. To be
generally useful, the shadow map approach requires not only texture map support
but also a high precision depth representation supported by the texture mapping
hardware. Texture mapping datapaths are generally designed for processing colour,
each component of which needs at most 12 bits; colour can be adequately repre-
sented for most purposes using only 8 bits. In contrast, the precision of a hardware
depth buffer is generally between 16 and 32 bits.

Depth precision is especially important for shadows; the shadow volume boundary
naturally grazes the surfaces in the scene. If the depth values are imprecise a large
bias must be used to avoid surface acne, and this can cause serious inaccuracies
elsewhere. For instance, with a large bias shadows cast on ground planes by objects
sitting on these planes can become detached from the objects casting the shadows.
An “adaptive bias” can be use to correct this problem, for instance by storing in
the depth map the depth halfway between the frontmost and the secondmost depth
from the lightsource, but this complicates the acquisition of the shadow map.

A flatland example of the shadow map algorithm is given in Figure [IB, using
linear interpolation of depth values. Bias is not shown, but would in general be
needed to avoid surface self-shadowing in the presence of quantization error.

Conservative variants of shadow maps have been used in ray tracing acceleration
[Haines and Greenberg 1986; Woo 1993] for direct shadows. In interactive applica-
tions, the shadow maps can be incrementally reprojected, as can the eye view, to
increase the frame rate [Chen and Williams 1993].
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1.5 Shadow Volume Reconstruction

The shadow volume reconstruction algorithm is a hybrid of the shadow map and
shadow volume algorithms that does not require a polygonal representation of the
scene. Like the shadow map algorithm, it instead requires a depth map rendered
from the point of view of the light source. This light-view depth map information
is used to reconstruct a polygonal shadow volume boundary that can be combined
with an eye-view depth map using only a one bit stencil buffer.

The shadow volume reconstruction algorithm imposes no limitations on the use
of the hardware during the rendering of the light-view depth map or the eye-view
and its depth map; hence, it can be used with any hardware-assisted rendering
algorithm that generates a correct depth map.

The reconstruction of the shadow volume is based on computer vision techniques.
We detect silhouette edges and build a polygonal mesh representing the important
shadow volume boundaries.

The next section presents the basics of the hybrid algorithm. Section B discusses
the important optimization of silhouette edge detection, and Section @l presents
details on how the polygon mesh for the shadow volume boundary is constructed.
In Section B and Section f the practical problems of dealing with multiple shadow
maps, edge effects, and eye-view near plane clipping are covered. In Section [q
several shadow rendering modes are discussed. Section B discusses some useful
extensions resulting from the hybrid nature of the algorithm, and presents some
preliminary results from a vectorizing reconstruction process. Finally, in Section
per-phase timings are given.

2. HYBRID ALGORITHM

Observe that the z[x, y] depth samples in the shadow map, in conjunction with their
pixel coordinates, describe points (z,y, z) in the scene relative to the light source in
an orthogonal device coordinate system. We can join these points into a polygonal
mesh and transform them into world space, using the inverse of the shadow map
projection. The surface thus constructed defines the boundary between shadow and
light in the scene; it is the boundary of the shadow volume.

Unlike Crow’s algorithm, a shadow volume boundary generated this way consists
of a single star-shaped surface, with no nesting or overlapping. In this case, there is
no need to implement a full CSG union operation, summing front facing polygons
and subtracting back facing polygons. We just need to keep track of the parity of
the number of shadow polygons that are in front of the surface at each pixel.

If there are an odd number of shadow volume boundary intersections along a ray
from the eye to the first surface point at a pixel, then that surface point is in shadow.
Otherwise, it is illuminated. To keep track of shadow parity, a single bit stencil
buffer is needed. The stencil bit for a pixel is simply toggled whenever a shadow
polygon fragment is drawn on top of it. Practically speaking, this simplification is
a major advantage for hardware implementations. The extra frame buffer storage
required is minimal and finite. It is impossible to overflow the shadow depth count,
as is possible with Crow’s algorithm.

The details of the hybrid algorithm are as follows:

(1) Render the shadow map. The scene is rendered from the point of view of the
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light source and the depth buffer is read back. Multiple shadow maps may be required
for omnidirectional illumination and shadowing.

(2) Render the eye view. The scene should be rendered as usual from the point of
view of the eye.

(3) Reconfigure the frame buffer. Clear the stencil buffer. Disable writing to the
colour and depth buffers, but enable the depth test and set the stencil to toggle when
a shadow polygon fragment passes the depth test.

(4) Render the shadow volume. Reconstruct the shadow volume from the z[z,y]
coordinates in the shadow map, transform it back into world space, project it through
the same viewing transformation as the rest of the scene, and rasterize it. Both front
and back faces can be rendered simultaneously; ordering or distinguishing them is not
necessary.

(5) Cap the shadow volume. Whenever the shadow volume boundary is clipped by
the near plane, cap polygons need to be generated to ensure the shadow volume is
properly enclosed.

(6) Darken the shadowed pixels. The pixels where the stencil bit is set to 1 are in
shadow. Render the shadow using one of the techniques in Section [.

Since the texture-mapping hardware is not busy rendering shadows (as in [Segal
et al. 1997]), the scene can contain textured polygons without an extra rendering
pass. All other hardware facilities are also available during rendering of the eye
view and of the shadow map, including the stencil planes. The advantages of the
shadow map algorithm are inherited: In particular, since the shadows depend only
on the values left in the depth buffer by the scene renderer, it is non-intrusive.
Adding shadows to a scene will not typically require access to or modification of
the base renderer.

Another advantage of the hybrid approach is that shadow polygons are minimal
in size. They extend to the shadowed surface from the shadowing surface, but
extend no further. A practical problem with Crow’s algorithm is the size of the
shadow polygons. All shadow polygons extend outwards to the edge of the viewing
frustum after clipping, since intersection with the surfaces being shadowed is not
checked. If the speed of the rasterization engine depends on the image-space size
of polygons this can degrade performance.

The hybrid method also inherits some of the disadvantages of the shadow map
approach. The quantization of light buffer coordinates, particularly x and y, causes
aliasing of detail in the shadow volume. The problem is literally magnified when
the shadow is projected. Precision in depth is usually adequate, but appropriate
bias translations need to be added to both the light-relative z values and, in our
experience, the depth values from the eye-view [Reeves et al. 1987].

The other disadvantage is that in this most basic variant of the hybrid algorithm,
as in the basic version of Crow’s algorithm, a large number of shadow polygons are
generated. In the following section we show how this deficiency can be partially
overcome through silhouette edge detection.

3. EDGE DETECTION

The shadow volume only needs to contain polygons originating in the silhouette
edges of objects as seen from the light source. However, if all the points defined
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by the shadow map are used, many shadow polygons will be rendered that lie on
the surface of objects. These shadow polygons will be culled by the depth test,
so transforming and rasterizing them is a source of inefficiency that should be
eliminated.

To generate only the shadow polygons corresponding to the silhouette edges,
an edge detection process can be used. Edge detectors for computer vision are
generally designed to be robust in the face of noisy, low precision sensor data [Canny
1986; Marr and Hildreth 1980]. However, the depth values in the shadow map are
available at relatively high precision and the only noise is quantization error. If
necessary we can even modify the shadow map rendering process to produce more
information about edges, such as an object ID channel.

Our edge detection process can also afford to be conservative. If we acciden-
tally generate a shadow polygon that doesn’t correspond to a silhouette edge (false
positive), it will be culled by the depth test, and will not affect the final image.
Unfortunately, a missed edge (false negative) will leave a gap in the shadow volume
boundary and result in a visible error. These considerations imply that we should
choose the simplest and fastest edge detector available, but should strive to avoid
false negatives.

u[o4] u[1,4] u[24] u[34]

v[0,3] v[13] v[2,3] V[3,3] v[4,3]

u[0,3] u[1,3] u[2,3] u[3,3]

v[0,2] v[1,2] v[2,2] v[3,2] v[4,2]

u[0,2] u[1,2] u[2,2] u3.2]

v[0,1] v[1,1] v[2,1] v[31] v[4,1]

u[0,1] u[1,1] u[2,1] u[3,1]

v[0,0] v[1,0] Vv[2,0] v[3,0] vi4,0]

u[0,0] u[1,0] u[2,0] u[3,0]

Fig. 2. Two edge flag arrays are interdigitated with the shadow depth map.

3.1 Difference Magnitude Edges

The simplest discontinuity detector is a thresholded magnitude of the first deriva-
tive. The simplest estimate of a derivative is a difference. Using horizontal and
vertical first differences, we detect edges in both the horizontal and vertical di-
rections and set flags between neighboring pixels. See Figure B; u is an array of
Boolean flags for vertical edges, while the v array flags horizontal edges. Together
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we call these flags the edge map. Let 6 be a threshold value, and define the forward
differences Ay z[z,y] = z[lx+1,y] — z[z, y] and Ayz[z, y] = z[z,y+1] — z[z,y]. Then
the edge flags are set by the following computation:

ulz,y] = (Azzlz, yl| > 0),
vz, y] = ([Ayz[z, 4] > 0).

We do not filter the depth values before applying the differences. Doing so would
only blur the edges, possibly modify their apparent positions (i.e. by rounding
corners), and in the absence of significant noise is pointless.

The threshold € should be chosen conservatively; a value that marks O(n) of the
O(n?) potential edges should be approximately correct. If automatic adaptation is
required, a histogram of difference magnitudes can be used, but a constant threshold
is adequate if the near and far planes used to render the shadow map are set tightly.

The first difference has a simple geometric interpretation as the distance between
surfaces. This simple threshold detector therefore guarantees that a shadow poly-
gon will be generated whenever the distance between surfaces (in the projectively
transformed light-relative device coordinate system) exceeds §. With a little more
work we can transform the z values back into world space before applying the
threshold. Quantization error, however, will not be constant in world space.

3.2 Reducing False Negatives

False positives merely decrease efficiency. False negatives, however, will cause image
artifacts. There are two serious sources of false negatives: aliasing and abutment.

If the shadow map resolution is too low, the rendering of the depth map will
be aliased. Certain aliasing artifacts can be guarded against. If small objects are
disappearing, an edge rendering can be combined with a standard non-overlapping
polygon fill rendering. In the worst case, edge detection can be disabled altogether
to avoid incorrect responses to false structure artifacts such as Moiré patterns. The
necessity of such a measure can be estimated from the fraction of potential edge
flags that are set with a particular threshold. This fraction will give a measure of
scene complexity.

Edge flags can also be omitted at the ends of a silhouette edge defined when two
objects abut (as when an object sits on a ground plane), intersect, or where “folds”
end in a concave object. The depth contrast in these regions may be too low for
differences to exceed the threshold.

By lowering edge detection thresholds in the vicinity of a dangling edge, we can
deal with abutment problems conservatively but without introducing too many new
shadow volume polygons.

Call the square spaces between four adjacent depth samples cells. In practice we
store edge flags redundantly in the cells using a packed representation. Every cell
contains a 4-bit code that characterizes the configuration of edge flags around it.
Under this encoding, dangling edges are easy to identify: they correspond to cells
with the edge codes 0001, 0010, 0100, or 1000.

As a last resort, we can generate other information during the rendering of the
shadow map to help determine the location of silhouette edges. Suppose we render
different objects in the scene using different constant colours (IDs). We can then
read back the colour channel and if adjacent pixels are different colours, set the
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edge flag between them. If only convex objects are used in the scene, or if all
concave objects are split into convex parts, then objects cannot self-shadow and
the depth-based edge detector is not needed. If objects can be concave, the results
of the ID test and the depth test can be ORed. This need only be done in the
vicinity of a dangling edge.

The usefulness of an ID test will depend on how efficiently frame buffer contents
can be read back and scanned, whether disabling writing to the colour buffers
actually decreases the rendering time on a particular set of graphics hardware, how
complex the scene is, and how stringent the image quality requirements are.

3.3 Reducing False Positives

Our basic edge detector thresholds the magnitude of the first difference. Assume
that we have run this detector using a relatively low threshold 0 to obtain a set
of candidate edge flags.

A low threshold can result in blocks of false positives over steeply sloped surfaces
that are nearly edge-on in the light view. To eliminate these false positives, we can
use a second derivative test: If the second derivative does not have a strong zero-
crossing of the correct sign across a candidate edge flag, indicating a local minima
or maxima in the first derivative, then the candidate edge flag can be cleared. The
second derivative can be estimated using a second difference.

The second derivative test thins “thick edges”. This can lead to false negatives
when, for instance, two silhouette edges at different depths align to within one pixel.
The second derivative test should therefore be combined with a second threshold
test relative to 0y > 01, to identify “sure” edges:

|Azlz, gl > 0n  — 1

Agzz,y] >0 and
A2z[z —1,y] > 05 and
A2z[z,y] < Os — 1
|Agzlz, y]| > 0L —

Agzlz,y] <0 and
A2z[x — 1,y] < 0s and
A2z[z,y] > 0s — 1

ulz, y]

otherwise — 0

otherwise — 0

and likewise for v[z, y].
Additional ideas from computer vision, such as threshold hysteresis [Canny 1986,
can also be used to improve the detection of edges in low contrast situations.
These techniques can be implemented to operate only on the O(n) candidate
edge flags generated by the O(n?) initial 8, thresholding pass.

3.4 Hardware Edge Detection

The graphics hardware can be used to implement the first difference thresholding
edge detector, and can also be used to generate a hierarchical representation of the
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edge map to avoid the initial O(n?) data traversal costf].

Fig. 3. Difference thresholded edge detection can be performed in the depth buffer hardware.

The idea is sketched in Figure B. After the eye view is rendered, writing to the
depth buffer is disabled. The contents of the depth buffer are shifted down in x
and y by one sample and biased by +6, then copied back into the existing depth
buffer, with depth testing enabled. When the samples are biased by —6 the depth
test should be >, when they are biased by +6 the depth test should be <. The
combined set of operations is

Zlx + 1,y +60 < 2]
zlr +1,y] — 0 > 2]
[ 11460 < 7|
[ 11 -0 > z|

Zlr,y +
Zlx,y +

this is equivalent to

zlx,y] — z[x + 1,y] > 6,
zlz+1,y] — zlx,y] > 0,
[z,y] = z[z,y +1] > 0,
[ Y]

> 6,

z

zlz,y+ 1] — 2]

1This cost can be significant. In our implementation, run-length encoding the output of the edge
detector so the reconstruction algorithm in Section f] only had to scan O(n) cells resulted in an
order of magnitude improvement in the performance of the reconstruction algorithm.
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which is in turn equivalent to

|Agzfz, y]| > 9,
[Ayz[z,y]l > 9,

as desired.

The stencil and/or the colour buffers can be used to accumulate the results of
the depth comparisons, and the colour buffer can be used to generate a hierarchi-
cal map of non-zero cells using hardware zooming and compositing. All of these
operations can be performed entirely in hardware, using the existing OpenGL API
(i.e. glCopyPixels and glPixelZoom). In fact, using certain proposed extensions,
histograms can be computed in hardware to assist with threshold selection.

Unfortunately, we have found that with many current OpenGL implementations
depth buffer operations can be slow, and often are not implemented correctly, i.e.
the copied pixels are not passed through all fragment tests as specified in the stan-
dard or the depth buffer is not read back correctly when the depth test is enabled.
Hopefully future generations of graphics hardware will resolve these issues.

4. SURFACE RECONSTRUCTION

Once the edge flags are set, we can reconstruct the shadow polygons. The simplest
approach generates only the parts of a fixed mesh that abut at least one marked
edge; see Figure fl. Alternatively, we can generate specific clusters of polygons for
each possible combination of edge flags, using table lookup on the 4-bit combined
edge code for each cell, as in Figure H.
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Fig. 4. A fixed quadrilateral mesh is edited to only contain elements that overlap a marked edge.
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Fig. 5. Table lookup used to generate shadow mesh elements from the per-cell edge codes. The
table shown at the bottom is designed to extend dangling edges by one pixel.

When we need to reconstruct a quadrilateral, we need to choose how it will be split
into triangles. A poor split results in rough-edged shadows. The usual approach
of comparing the deviation of normals does not work well. Instead, the diagonal
differences in depth across each cell should be computed and the quadrilateral split
to cut across the diagonal difference of the greatest magnitude. This will produce
shadows with 45° jaggies rather than 90° jaggies.

We can divide the triangle configurations into two categories based upon which
way the quadrilateral is split. This information must be stored since it is necessary
for capping, as described in Section (-3

5. MULTIPLE MAPS

Since a single shadow map is limited in its field of view, multiple shadow maps
are needed to cast shadows omnidirectionally from a point light source. Each
shadow map addresses a partition of space. The multiple shadow volume boundaries
must be generated and fitted together carefully so cracks do not appear. Since the
reconstructed surfaces are all part of a single star-shaped surface they can all be
rendered together in one pass of Step @ of the algorithm in Section B.

When rendering the shadow maps in the hybrid algorithm, the viewing frustum
should be adjusted to render extra depth samples around the edges. This is visu-
alized in Figure B. This will permit the edge detection and reconstruction process
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Fig. 6. Omnidirectional shadowing requires partitioned shadow maps which should overlap to
maintain continuity.

to respond correctly and consistently right up to the geometric edge of the shadow
volume partition. The number of extra samples required will depend on the edge
detector used.

6. CLIPPING AND CAPPING

The scene is clipped when it is rendered both from the point of view of the light
source and from the eye. This can lead to several serious practical problems.

6.1 Light View Clipping

In order to maximize depth precision in the shadow map, the near and far distances
in the light view must be set as tightly as possible around the scene. If the near
distance is too small precision close to the far plane will suffer.

Objects closer to the light source than the near distance will be clipped during
rendering and so will either fail to cast a shadow or will cast a reduced shadow. If
backface culling is used during rendering of the light view it will appear as if holes
have appeared in the occluder. Complete near-plane clipping is not critical, since
it will appear that the light source has passed through the object.

Light view far plane clipping is not a serious problem either if light-source atten-
uation is used. If a scene bounding volume is not available, the far plane can be
set at a distance at which the light from the source can be neglected.

A bounding box around the viewing frustum in world space can be intersected
with the scene bounding box to select a tight light view projection. In this case if
the eye view changes the shadow map will have to be updated.
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6.2 Eye View Clipping

The eye-view far plane clipping plane can be interpreted as a full-screen polygon,
rendered in the background colour at the maximum depth, which culls shadow
volume polygons in the usual way with a depth test.

Unfortunately, if shadow polygons are clipped away by the near plane of the eye,
parity information is lost. The standard solution of inverting the parity globally
(or incrementing the shadow count globally) if the eye is in shadow [Bergeron 1985
Crow 1977] does not work, since the parity should only be inverted where the
interior of the shadow volume is visible. This is demonstrated in Figure []. The eye
itself happens not to be in shadow in either of these examples, but the visible part
of the near plane intersects the shadow volume boundary.

Fig. 7. Clipping the shadow volume boundary at the near plane of the eye can reverse the
parity of the shadow test locally. This can happen with occluders behind the eye (top) or when
looking towards the light source (bottom). From left to right: side views with the shadow volume
drawn using visible polygons, views where the near plane facet of the viewing volume intersects
the shadow volume, the same view but with the shadows rendered without capping (and with
inversion artifacts), and finally the corrected images rendered with capping.

The near plane clip must be handled by capping the shadow volume boundary
at the near plane of the view volume. Since the shadow volume boundary is not
closed (due to the edge detection elimination of redundant shadow polygons), does
not have hidden surface removal applied to it, and may be hidden by parts of the
existing scene depth values, we cannot generate caps in the usual manner, i.e. by
detecting visible back facing polygons, at least not on the same pass we use to
set the shadow stencil flags. An additional pass could be used, but would require
the rendering of all O(n?) shadow volume polygons and would overwrite the depth
buffer.

Other hardware-accelerated approaches are possible, including using a projection
shadow algorithm to cast appropriate shadows onto the near plane. However, we
have found that when the shadow volume is regenerated from a shadow map a
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simple and fast software capping algorithm is feasible, since we can take advantage
of the coherent structure of the shadow volume polygons.
Our software solution involves the following steps:

(1) Transform the plane equation of the near clipping plane of the eye into light
device coordinates.

(2) Transform the rectangular near plane facet of the view frustum into light device
coordinates.

(3) Scan convert the transformed near plane facet over the shadow map and test
all covered shadow map samples against the transformed near plane equation.

(4) If all samples tested are on the eye side of the near plane, the parity test should
be inverted globally, but no cap polygons need to be drawn.

(5) If all samples tested are opposite the eye side of the near plane, or if the near
plane facet is not visible in the light view, no cap is needed.

(6) If there are samples on both sides of the near plane, cap polygons need to be
generated.

Using either of the simple reconstruction processes presented in Section [, cap
polygon vertices can be reconstructed without referring to the actual silhouette
polygons. There are 32 = 2 x 2% possible cases combining sample to near plane
classification and the reconstruction split in each cell. We can analyse each case
and generate the appropriate cap polygons one cell at a time.

Once generated, the cap polygons are simply rendered with the rest of the shadow
polygons to toggle the parity where needed.

A detail of a cap is shown in Figure §. We do not currently attempt to trace
and tesselate the contours of the cap to improve coherence, although this could
be done. We do render runs with single polygons, after run-length encoding the
results of the capping test. If contour tracing is used holes in caps could simply
be rendered as additional backfacing cap polygons; this would toggle the parity
correctly and would also work with multiple shadow volumes (Section B2) using
Crow’s algorithm. As will be shown later the computational and rendering cost of
software capping is negligible.

Since the hardware is clipping the uncapped shadow volume boundary at the near
plane of the eye we don’t have to do it in software. However, the implementation
must avoid having the cap clipped away. We translate the device coordinate system
itself in z to avoid this problem and to avoid having to shift the cap polygons away
from their true positions.

To avoid numerical problems with the intersection of rays from the light source
with the eye view near plane facet, the intersection points (vertices of the cap
polygons) are computed in homogeneous coordinates, without an explicit division.
If the eye view near plane facet is edge-on in the light source view the cap vertices
will then be mapped towards infinity in the eye view, as appropriate. The cap
vertices need to be computed with reasonably high accuracy to avoid doubling up
of edge pixels where the cap meets the clipped shadow volume. We have found this
happens occasionally, but these salt-and-pepper artifacts are nearly invisible and
are certainly preferable to gross inversion.
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Fig. 8. Detail of a cap generated using a very low resolution shadow map. Rows of depth values
with the same classification relative to the eye-view near plane are run-encoded and rendered as
single rectangles. Cells with mixed classifications are clipped against the shadow volume recon-
struction polygons to generate appropriate fragments to complete the cap.

7. SHADOW RENDERING MODES

Once the stencil bit has been set correctly, shadows can be rendered in a number
of different modes:

Ambient Shadows: If the scene renderer does not use the stencil buffer, the scene
can be rerendered using only ambient illumination, masked to modify only
pixels in shadow.

Black Shadows: A single black polygon can be drawn over the entire scene to
blacken all pixels in shadow.

Composited Shadows: A semitransparent black polygon can be drawn over the
entire scene to darken all pixels in shadow.

However, with use of the composited shadow rendering mode incorrect illumination,
including highlights, will be present in the shadow. If the ambient illumination does
not match the colour drawn in shadow, artifacts can result along silhouette edges;
look closely at Figure §. If black shadows are used, the ambient illumination should
also be zero.
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Fig. 9. Shadow rendering modes, left to right: consistent ambient shadows; consistent (zero
ambient illumination) black shadows; inconsistent composited shadows; and inconsistent (non-
zero ambient illumination) black shadows.

The basic hybrid shadow algorithm can only render one light source at a time.
Generally, multiple light sources should be rendered as follows:

(1) Render the eye view using only ambient illumination and load the image into
the accumulation buffer.
(2) For each light source:
(a) Render the eye view illuminated with the current light source and a zero
ambient term.
(b) Disable writing to the colour and depth buffers and set the depth test to
44<” .
(¢) Clear the stencil buffer and render the current shadow volume, inverting
the stencil for each fragment.
d) Enable drawing to the colour buffer and turn off the depth test.
) Draw a black polygon where the stencil is set.
) Add the colour buffer to the accumulation buffer.

(3) Recover the accumulation buffer without scaling it.

s

This algorithm works even if the base renderer uses the stencil buffer.

If the colour precision is adequate, the stencil buffer is not used by the base
renderer, and the base renderer uses only standard hidden surface removal, then
compositing can be used instead of the accumulation buffer:

(1) Render the eye view using only ambient illumination.

(2) For each light source:

(a) Disable writing to the colour and depth buffers and set the depth test to
cc<77 .

(b) Clear the stencil buffer and render the current shadow volume, toggling
the stencil.

(¢) Set the depth test to “=” and enable compositing to the colour buffer. Set
the source and destination compositing factors to one and one.

(d) Render the eye view illuminated with the current light source and a zero
ambient term only where the stencil is zero.

The “=” depth test ensures that only the frontmost surface’s illumination will be
composited. Use of this depth test assumes that changing the lighting model does
not change the depth of any pixel in the scene.
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In either case, for N light sources N 4 1 eye-view renderings of the scene are
needed, in addition to at least N light-view shadow map renderings.

8. EXTENSIONS

The hybrid algorithm can be extended in a number of ways by reconstructing better
shadow volumes and/or by combining shadow volumes with Crow’s shadow volume
union algorithm.

8.1 Vectorization

In theory, the geometric representation of the shadow volume means that a more so-
phisticated reconstruction strategy could produce shadows that are an improvement
over the shadows produced by the shadow map algorithm; currently our algorithm
merely produces equivalent shadows.

For instance, subpixel edge information can often be recovered by segmenting
and vectorizing edge contours [Bloomenthal 1983]. We have experimented with
this; some preliminary results are shown in Figure [[J. Vectorization improves both

Fig. 10. A vectorized shadow volume and the resulting shadows are shown on the left, for a
low-resolution shadow map. On the right are the non-vectorized shadow volume and shadows
generated from the same shadow map.

quality and performance, since it permits replacing the numerous small polygons
that are generated by the simpler reconstruction techniques with a smaller number
of larger polygons, which can be more efficiently rasterized and produce more coher-
ent shadows. The main difficulties are determining good shadow volume facets that
are consistent with the depth samples in the shadow map, dealing consistently with
non-vectorizable “blobs” and edge conditions, and implementing efficient capping
of the resulting shadow volume.

8.2 Multiple Shadow Volumes

Shadow volumes could be reconstructed from shadow maps on a per-object basis,
which would permit interactive manipulation of parts of the scene without having
to recompute global shadow maps. This could also be done using, for instance,
spatial decomposition or attachment hierarchies.

If object-space precision shadow volumes are available for some objects but not
others, render only the objects which cannot generate object-precision shadow vol-
umes into the light view. Then combine the shadow volume(s) reconstructed from
the light view depth buffer with the object-precision shadow volumes using Crow’s
algorithm.
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Since per-object shadow volumes can overlap and nest, counting would be needed
in the stencil buffer, or the shadow volumes would have to be rendered one at a
time (blackening parts of the scene after each). If the maximum amount of nesting
is known for each per-object shadow volume, the number of bits needed for the
total nesting count can be computed and the shadows “batched” to avoid overflow.

Certain algorithms may require the ability to incrementally extend shadow vol-
umes. For instance, in hardware-assisted global illumination [Diefenbach and Balder
1997; Keller 1997], light may be reflected off a mirror by creating a virtual light
source. In this case, the shadow map of the original light source is also reflected,
but the reflected light may be blocked by additional occluders.

There are two ways to extend the reflected shadow map to account for these extra
occluders. At the level of depth maps, the extra occluders can be rendered into a
new depth map and merged with the reflected shadow map, and the shadow volume
polygons regenerated from the merged shadow map. Alternatively, a secondary
shadow volume can be generated from a light view containing only the occluders.
This new shadow volume will overlap the reflected shadow volume, and so the scene
must be rendered using Crow’s algorithm.

8.3 Shadow Edge Antialiasing

Shadow edges could be antialiased without any need to recapture the shadow map
by jittering (with a small shear transformation) the backprojection of the already
reconstructed shadow volume polygons. The magnitude of the jitter would be
on the same order as the bias and the xy resolution error. An n-rooks sampling
pattern for the jitter should be used to get the maximum number of grey levels for
displacements of the edges.

By using multiple stencil bits, the scene would not have to be rerendered for
each pass, only the shadow polygons. After n shadow volume rendering passes into
n separate bits of stencil, n renderings of a full-screen semitransparent polygon
could be used to replace the original colour in the frame buffer with an appropriate
amount of black.

9. RESULTS AND TIMING

All values presented here were estimated using an average of the timings for 1000
random rotations of the test scenes in Figure [[I], whose triangle counts are given
in Table B. The ANSI C/OpenGL/GLUT test implementation was run on two
machines: an SGI Octane with a 175MHz MIPS R10000 processor and the SI
graphics engine (without texture mapping support), and an SGI O2 with a 225MHz
MIPS R10000.

The objects shown above the ground planes in Figure [[1 are reflected and du-
plicated below the ground plane for the purposes of this test, so all views have
approximately the same visual complexity. Table | gives the total number of trian-
gles in each scene, and the average number of polygons in the corresponding shadow
volumes. Only a single-view shadow map was used.

Depth precision on both machines was 24 bits. Two spatial resolutions (256 x 256
and 512 x 512) of both the image and the shadow map were tested, to determine
scaling of the algorithm with resolution.

Edges were flagged with a modified Canny edge detector. The template based
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reconstruction scheme shown in Figure f was used, with the max-diagonal cut
splitting rule for quadrilaterals.
The test program is self-contained and may be downloaded from

http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/

Fig. 11. Test scenes A, B, C, and D, left to right.

9.1 Timings

Per-phase and overall timings are given in Table [ll. For the per-phase timings given,
ambient illumination was zero and black shadows were rendered using a single black
stenciled rectangle. Overall rates for ambient shadows (which require an additional
rendering of the scene lit only with ambient illumination) and unshadowed scenes
are also given for comparison. Note that the primary shadow-related computational
costs are edge detection and shadow volume rendering.

The edge detection cost is primarily data access; increasing the complexity of
the edge detector does not change this timing significantly. Our edge detector
implementation is entirely in software. The first pass of the edge detector could
theoretically be implemented in hardware via OpenGL, but did not have access to
a machine for which our standard-compliant OpenGL implementation both worked
and was faster than a straightforward software implementation.

Note as well the large time for depth buffer readback on the O2. This is myste-
rious, as the O2 has a unified memory architecture; even with a format conversion
the readback should be no more costly than the edge detection, but it is, by a
significant factor. The timings could probably be improved significantly on the O2
with tuning of the driver.

The shadow volume rendering cost is primarily vertex transformation limited.
Our preliminary results indicate that vectorization will decrease the time to ren-
der the shadow volume by an order of magnitude, while only slightly increasing
reconstruction time. Capping, however, would be significantly more complex.

The shadowing cost is, as expected, relatively independent of scene complexity,
but is approximately linearly dependent on the resolution of the shadow map. Dou-
bling the shadow map resolution (quadrupling the number of depth samples) less
than doubles the number of shadow volume polygons. Note as well that the pri-
mary rendering time for scene C was much longer than any of the other scenes, but
the total time spent reconstructing and rendering the shadow volume was approx-
imately equivalent to scene B, and in fact slightly less. Therefore, this technique
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should be especially effective for complex scenes containing curved surfaces. For
simple scenes, unfortunately, the resolution-dependent overhead swamps the base
rendering time of the scene itself.

Resolution 256 x 256

Machine Octane SI 02

Scene A B C D A B C D
Light view render 4.0 5.5 100.1 8.3 6.2 9.7 178.3 14.7
Depth read 1.4 1.4 1.5 1.4 57.0 57.2 57.2 57.1
Edge detect 17.3 18.9 19.2 17.5 15.4 16.0 16.4 15.3
Reconstruct 2.8 10.5 10.1 3.0 10.0 46.6 44.0 10.4
Eye view render 7.2 12.7  246.6 16.0 9.1 15.9 275.8 24.1
Volume render 34.4 96.3 78.0 35.5 10.3 35.0 33.0 11.1
Volume cap 0.38 0.42 0.55 0.46 0.33 0.53 0.82 0.49
Shadow render 0.8 0.8 0.8 0.8 1.2 1.1 1.1 1.1
Total time 68.3 146.5 456.9 83.0 | 109.5 182.0 606.6 134.3
Unshadowed (Hz) 138.9 78.7 4.1 62.5 110.0 62.9 3.6 41.5
Shadowed, Black (Hz) 14.6 6.8 2.2 12.1 9.1 5.5 1.6 7.4

Shadowed, Ambient (Hz) 12.9 6.1 1.2 9.5 8.4 5.0 1.0 6.1
Resolution 512 x 512

Machine Octane SI 02

Scene A B C D A B C D
Light view render 6.1 7.9 101.7 10.0 9.2 12.3 184.8 18.1
Depth read 4.5 4.5 4.3 4.5 | 209.5 209.2 209.9 209.6
Edge detect 73.2 76.5 76.8 73.7 71.8 74.4 75.2 72.1
Reconstruct 5.5 22.8 20.9 6.2 18.4 108.7 98.4 21.3
Eye view render 10.9 16.2  248.3 18.9 11.2 17.4  280.2 26.8
Volume render 66.6 199.1 155.0 69.0 28.4 101.0 82.5 30.8
Volume cap 0.66 0.79 1.22 1.00 0.65 1.29 1.65 1.08
Shadow render 3.3 3.3 2.9 2.9 4.1 4.1 4.2 4.1
Total time 170.8 331.1 611.1 186.2 | 353.3 528.4 936.9 383.9
Unshadowed (Hz) 91.7 61.7 4.0 52.9 89.3 57.5 3.6 37.3
Shadowed, Black (Hz) 5.9 3.0 1.6 5.4 2.8 1.9 1.1 2.6

Shadowed, Ambient (Hz) 5.6 2.9 0.98 4.8 2.8 1.9 0.78 2.5

Table 1. Comparative timings for the various phases of the algorithm. Unless otherwise noted,
units are milliseconds. Rates do not include swap synchronization latency.

| Scene: | A B C D
Scene Complexity 3,756 3,132 450,132 7,332
Average Shadow Volume Complexity (256 x 256) | 2,322 8,707 8,399 2,402
Average Shadow Volume Complexity (512 x 512) | 3,544 16,456 15,093 4,021
Ratios of Shadow Volume Complexities 1.53 1.89 1.80 1.67

Table 2. Complexity of test scenes and average reconstructed shadow volumes in triangles. A
shadow volume complexity ratio of 2 would indicate linear growth.
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10. CONCLUSIONS

We have presented a hardware-assisted shadow algorithm that regenerates a polyg-
onal shadow volume from depth buffer information.

This algorithm requires a one bit stencil buffer but does not require texture
mapping or access to a polygonal representation of the scene. In fact, the algorithm
imposes no constraints on how the hardware is used to generate the image, other
than the requirement that correct depth values be generated.
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