Transparency and Antialiasing Algorithms
Implemented with the Virtual Pixel Maps

Severa] high-quality rendering algorithms attempt
to present a form of realism typically lacking in most
computer-generated graphics displays. Visual cues
that portray depth of field, lightingand optical effects,
shadows, material properties, physical phenomena,
etc., aid tremendously in the overall perception of an
image. Unfortunately, rendering systems that are
good at displaving shaded geometrical constructs are
not well suited for solving the special needs ot high-
quality rendering effects. This is primarily because
these algorithms require a considerable amount of
information per ‘pixel and need constructs at the pixel
level typically unavailable in most rendering sys-
tems. A dedicated frame buffer with a fixed number
of hits per pixel is highly restrictive in supporting
these algorithms. A system with a virtual frame buffer
does not have such restrictions; this article attempts
to establish the benefits of such a devige.

July 1989

Technique

Abraham Mammen
Stellar Cemputer

The application views the Virtual Pixel Map archi-
tecture as regular virtual memory; it is a resource that
is dynamically available to assign an almost arbitrary
number of attributes per pixel. Instead of viewing a
pixel just as having color and depth information, the
Virtual Pixel Map concept allows the definition of a
pixel to be whatever the application requires. With
this flexibility, designers of rendering algorithms can
use methods that are inherently fast and simple, but
require a considerable amount of memory. Rendering
techniques that were previously too computationally
expensive can now be efficiently managed within the
framework of a graphics computer system.’

This article is limited to techniques of implement-
ing high-quality antialiased transparency rendering
algorithms, although other rendering operations---en-
vironment mapping, shadows, image processing,
etc.—can he easily implemented using the Virtual

027217-16/89/0700-0043501.00 21988 [EEEK 43

Pixel Maps architecture. Several of the techniques
presented here are used by the graphics hardware
rendering system on the Stellar Graphics Super-
computer Model GS1000.%?

Transparency

Transparency effects are synthesized by linearly
combiningintensity contributions from the two near-
est pixels in z space as

I=tI]+(l—t]Iz,0StS1

where I, is the intensity of the pixel closer to the eye
point, I, is the intensity of the pixel immediately be-
hind it, and ¢ is the transparency factor. If t = 0, the
pixel is invisible. If t = 1, the pixel is opaque.*

The transparency factor models the characteristics
of the material of the object and is usually specified in
one of two ways: either as a constant term for the
entire object or in some nonlinear fashion over the
surface of the object.* For the latter case, one such
criterion could be based on the curvature of the object;
hence the transparency factor would be a function of
the surface normal. From the rendering system’s
standpoint, this nonlinearity is modeled by comput-
ing the transparency factor explicitly at points on the
object (on the basis of some physical characteristic
being modeled) and then linearly interpolating across
the geometry. This is similar to lighting calculations
computed at the vertices of polygons and then inter-
nally interpolated. In the simple model, the rendering
system associates a constant transparency factor for
the entire object.

Description of the algorithm

To render transparent objects correctly, it is impor-
tant to process pixels in a depth-sorted order, so that
we can incrementally obtain contributions from all
the transparent layers in the scene. It is especially
difficult to incorporate transparency in a hidden-sur-
face algorithm that uses z-buffering, because the ren-
dering is performed in no specific order. What makes
z-buffering an attractive technique for doing hidden-
surface removal becomes a major drawback for algo-
rithms that inherently function on the basis of some
form of sorting operation. This is especially true for
objects that intersect as well as interpenetrate each
other. It is extremely difficult to do object-level sort-
ing at the application level, so that objects are pre-

44

sented to the rendering system in a back-to-front
order.

We would like to find a solution that does not force
the application to do depth sorting but still uses z-
buffering as a hidden-surface removal tool for all the
simplicity it provides. The Virtual Pixel Maps tech-
nique is an ideal vehicle for solving such pixel-inten-
sive algorithms. We can reduce a difficult problem to
a series of simpler problems by performing sorting at
the pixel level and accumulating the transparency
effect on a multipass basis. For each pass, the objec-
tive is to find all the transparent pixels that arc closest
to the opaque pixels by sorting the pixels in depth
order. At this point, we blend the transparent and
opaque pixels. Now the farthest transparent pixel be-
comes the new opaque pixel. This, in effect, is a mov-
ing-depth algorithm, where the pixel depth being
processed moves toward the eyepoint as transparent
layers are resolved.

We assume that the transparent objects in a scene are
tagged separately, so that only the opaque objects are
initially rendered into the opaque pixel maps. For
each pass of the transparent objects, we would like to
find the set of transparent pixels closest to (in front of)
the corresponding set of opaque pixels (see Figure 1).
The sorting operation is performed with two depth
pixel maps: the normal opaque depth pixel map and a
sort depth pixel map. As each transparent pixel is
processed, the current computed depth is compared
with the stored opaque depth and the stored sort
depth (see Figure 2a). If the current depth is in front of
the opaque depth and behind the sort depth, then this
transparent pixel is closer to the opaque pixel and
hence becomes the new sort pixel (i.e., the current
depth, intensity, and alpha values are stored in the
respective sort pixel maps). Transparent pixels be-
hind opaque pixels are trivially rejected. After all the
transparent pixels have been rendered, the pixels in
the sort pixel maps represent those that are closest to
the opaque pixels. Now we can blend the opaque and
the sort intensity pixel maps and also move the
opaque depth closer to the eye position by updating
the opaque depth from the stored sort depth value
(Figure 2b). This operation continues until all the
transparent layers are resolved. At each pixel, we
store the following attributes (see Figure 2):

e Opaquedepth

¢ Opaque intensity

e Sort depth

e Sort intensity

e Sort transparency factor (alpha)

1IEEE Cemputer Graphics & Applications

Chronological Pixel Arrival Order

-0

o9
wo
aU

Step 1 Q _l_ +

Opaque
Pixel Map

O
+ g +

'

Positions in Z

|

Positions in Z
g Opaque
0 Pixel Map
M Eye b O
E
T Step 2 Q + 2 O] -+
R
Y
4 Pive Map
Eye
S]
s oses Q + |® ot
N
Eye
sews 4 a7 ;
Opagque
Pixel Map
Eye 0O
Step 5 Q
+ + + ol +
B Blend
L
5 Opaque (2) = SORT (2)
D Eye Opsque () = blend (SORT, Opaque)
o oswr Q + 4+
A .
S .
S
N

Figure 1. Finding the transparent pixel closest to the opaque pixel.

July 1989

45

Render
Pixel Map
(i)

NV N\A

Current Depth
Compare (z-value) Compare
r'd

it OPAQUE < CURRENT DEPTH « SORT
then SORT = CURRENT DEPTH

Render
Pixel Map

(2)

N

1. Render ali opaque objects

2. Allocate SORT Pixel Maps

we.

KiE
—5oR T
Pixel, Map;
h?"ﬁ“ﬁQ:
EyE

xel Map

(2) \
ZENN

Pi Geometry Rendering Phase

repeat

3. Render Transparent Objects
update SORT (I, z, alpha, VISIT)

4. Blend Pixels
f VISITED
update | {SORT, OPAQUE)
update z (SORT, OPAQUE)
untll ALL LAYERS RESOLVED

VISIT inkialized to '0

Initialized todefault state
{or at least as far as eye posdion)

Normal Rendering Pixel Maps S

a

Allocated for multi-pass transparency

ort Pixel Maps

Render
Pixel Map

1. Render all opaque objects

2. Allocate SORT Pixel Maps

(i)
R

Update (i) value
H VISITED
blend ((SORT i, alpha), r

Update Render Pixel (z) value
with SORT Pixel Map (z) value

=
\

o3

oR

S
S
Pixel pi AlphaBlend Phase l
M
repeat
3. Render Transparent Objects
QIR‘}—-' uvpdae SORT (I, z, alpha, VISIT)
Pixel, Map 4. Blend Pixels

It VISITED
update | (SORT, OPAQUE)
update z (SORT, OPAQUE)

until ALL LAYERS RESOLVED

'(aiph?vle-
o

R
Pixell J;;—x

Render
Pixel Map

(z)

Normal Rendering Pixel Maps

b

Allocated for multi-pass transparency

_JF(T)

Sort Pixel Maps

Figure 2. Multipass transparency: (a) geometry rendering phase, (b) alpha blend phase.

The number of passes needed for completion is a
function of the maximum number of transparent lay-
ers at any pixel. At the end of each pass, the graphics
application needs to know whether additional passes
are required. The rendering stage of the graphics pipe-
line supplies a flag, which is queried to determine
when to terminate. To keep track of the number of
unresolved layers, the sort pixel maps also store a visit

46

flag, which is set whenever the z comparison tourney
finds a transparent pixel in front of the opaque pixel.
During the pixel-map-blending operation, the render-
ing stage accumulates the number of pixels that were
visited, a state available for the graphics application
to query. The simplest method is for the application to
continue re-rendering the scene until the total num-
ber of pixels having transparent layers reaches some

IEEE Computer Graphics & Applications

d

Figure 3. The multipass transparency technique. The
database is an “unterlafette,” which has approximately
4,500 triangles. Atthis viewing angle, there are 16 transpar- ¢
ency layers: (a-c) Passes illustrating the incremental manner in which the scene is built. (d) The final image
after 16 passes. The image was also antialiased by rendering the geometry nine times using a 3 x 3 triangular
filter. Thus 144 passes (16 x 9) were needed to generate the image. (e) A magnified region of (d) showing the
overall effect of transparency and antialiasing.

threshold level. Figure 3 illustrales how a scene is pixelcCoart: te-al count of cutstardirg
incrementall v svnthesized. LrZansparcont 1aycrs
agJe: deptn stored in ZOPACUE
Summary of operations pixel map
The multipass technique is summarized by the fol- Topague: inTtensity stored in OPAQUY
lowing sample pseudocode: pixel map
Typical sequence
Definitions GetPixe Map ;
cut depLh at current pixel InitPixeiMap ;
t kenderOpagueldlb
Get?ixelMag
toxr () A
map IritPixelMap (saort pix map) ;
Toort intensity stored in [SOR RenderTransparentObjects () ;
plxcl map RlerdPixelMao
nhsort: alpha stcrec 1 ASCRT pixel (sort_pix_map,opaque_pix_map) ;
nap Quecry (PixelCourt) ;
Vsort: visit flag in V if (PixelCounl < thresho.c) breax ;
map :

July 1989 47

Rendering stage

for (transparent_ objects)
for (pixels_in_object)
if ((Zcomputed > Zopaque)
&& (Zcomputed < Zsort)) {

Vsort =1 ;
Zsort = Zcemputed ;
Isort = Icomputed ;
Asort = Acomputed ;
t
Blending Stage

PixelCount = 0 ;
for (pixels_in_pixel map)
if (Vsort !'= 0) {
Zopaque = Zsort ;
Iopaque += Asort* (Isort - Iopaque) ;
PixelCount++ ;

Optimizations

The simple approach of rendering the entire scene
for each transparent pass is not terribly efficient for
the geometry and rendering pipeline. Toimprove effi-
ciency, we dynamically reduce the number of trans-
parent objects that need to be transformed and
rendered as we proceed through the various passes.
During the rendering phase, we determine if any por-
tion of the object is within the domain of the opaque
depth. If the entire object is behind the moving
opaque depth space covered by the object, then that
object need not participate any further in the transpar-
ency operation. If portions of the object are still in
front of the opaque depth, then the object cannot be
released from consideration and hence needs to be
invoked for the next pass.

We assume that each object in the scene is identified
by a pointer to its data structure. As part of the normal
rendering operation of finding the transparent pixel
closest to the corresponding opaque pixel, we can
detect whether any portion of the object is in front of
the current opaque layer. If all the pixels in the object
are behind the corresponding opaque pixels, then the
object cannot contribute toward resolving transpar-
ency and hence is tagged as inactive. If one or more
pixels in the object lie in front of the opaque pixels,
then the object is tagged as active. The state of the
object is exported to the application by maintaining
an object pointer list; the current object pointer is

48

appended if the object is active; otherwise a null
pointer is appended.

After rendering all the transparent objects in the
scene, the application invokes the active objects in the
list through the geometry and rendering pipeline. As
the transparency layers get resolved, each pass re-
quires fewer elements to be processed. For scenes
where dense transparent layers exist in sparse areas,
such a technique yields a significant performance im-
provement. Here is a typical sequence:

for (transparent objects) {
ObiectPointer = NULL ;
for (pixels in object) {
if ((Zcomputed > Zopaque)
&& (Zcomputed < Zsort)) |

Vsort = _ ;

Zsort = Zcomputed ;
Isort = Icomputed ;
Asort = Acomputed ;

}

if (Zcomputed > Zopaque)
®bjectointer =
CurrcentObjectPointer ;

}

*PointerPixMap++ = ObjectPointer ;

Pixel map initialization

Between passes, the application reinitializes several
pixel maps. The Zsort pixel map is initialized to a
depth value at least as far as the eye position, so that
during the rendering phasc, the sorting operation cor-
rectly determines which transparent pixelisclosestto
the opaque pixel. Also, the Vsort pixel map is initial-
ized to 0. The rendering stage marks pixels that have
outstanding transparent layers by setting the Vsort
value to 1.

Transparent spheres

The multipass technique described also applies to
spheres. Since the transparent layers arc resolved on
a per-pixel basis, it is possible to correctly blend
spheres that both intersect and interpenetrate each
other. Transparent spheres are synthesized by render-
ing the front and rear shells, thus associating two dis-
tinct transparency layers for every pixel within the
sphere. Polygons and spheres can be freely intermin-
gled in the construction of the scene. As with poly-
gons, opaque spheres are rendered before invoking
transparent spheres. Figure 4 is an example of this

IEEE Computer Graphics & Applications

d e

technique applied to a display consisting of a cluster

of spheres that intersect each other.

Another method of implementing
transparency

The above-mentioned transparency algorithm can
be slightlv madified to require fewer bits per pixel
(and hence fewer pixel maps). at the expense ol in-
creasing the overall number of passes. In the previous
implementation. the sort pixel maps were defined for
storing the depth. intensity, alpha. and visit flag. In-
stead, we now have just one sort pixel map defined for
the depth. which is used to determine the pixel clos-
est to the currently defined opaque pixel: the sorting
procedure is identical to the previous method. How-
ever, no lighting calenlations are made while we find
the farthest transparent pixel. Through a second pass.,
we re-render the scene. When the current depth
matches the stored transparent depth in the sort pixel
map. we know that this pixel is a valid candidate for
the blendingoperation. The lighting model is applied
at this stage, and as before we move the opaque depth
toward the eve point by updating its value to the cur-
rent depth.

This method requires two passes to resolve one
laver of transparency, while the previous method re-

July 1989

C

Figure 4. Multipass transpar-
encv technique applied to a
scene consisting of a set of seven
intersecting spheres. The
spheres were selected for their
simplicity, permitting easy ob-
servation of the multipass image-
building process. The five passes
shown have aviewingangle with
nine transparency lavers.

quires on.yv one pass. However. the former method
requires a blending stage at the end of each pass.
which operates over the entire space of the pixel map.
The current method has instead a second rendering
stage. This method performs z-buftering twice. and
the blending operation is incorporated in the second
rendering stage. The major benefit is that onlv ane
additional pixei map is needed. significantlv improv-
ing the overall storage requirements,

There is the potential for somewhat reduced perfor-
mance with this method. because on the average the
second rendering stage takes longer than the pixel-
map-blending operation. On the other hand. the first
rendering stage is faster than the rendering stage used
in the former method because lighting calenlations
are deterred. Tt is difficult to estimate which method
will be faster from a svstem standpoint. especiallv
since pertormance depends on geometry.

Summary of operations

The above-described method of implementing
transparency is summarized as follows:

Rendering stage 1

o (L r AN s

Triangle 2

Triangle 1

QO Triangle 1 Pixels
@ Triangle 2 Pixels

@ Pixels with function
F = 0 for both triangles | Figure 5. Multiple pixel

if ((Zcomputed > Zopaque)

&& (Zccmputed < Zsort)) {
Zsort = Zcomputed ;
}

Rendering stage 2
for (transparent objects)
for (pixels_in object)
if ((Zcomputed == Zsort) {
Zopaque = Zsort ;
Iopaque += Acomputed
* (Icomputed-Iopaeue) ;

PixelCount++ ;

}

Multiple pixel visit problem

Most rendering algorithms visit pixels multiple
times along the common edge boundaries of poly-
gons. For normal rendering operations, this does not
present a serious problem, because the intensity and
depth computations are so close for multiple in-
stances of the same pixel that no noticeable artifacts
are observed. Occasionally, for databases that have
inconsistent surface normals, this results in erratic
behavior, especially around silhouette edges. Visiting
pixels multiple times for a transparency algorithm has
drastic effects, because all such pixels will apparently
have more transparent layers and consequently ex-
hibit more intensity saturation than surrounding
pixels. This translates to discrete bright spots, which,
of course, are immediately noticeable.

Let us examine why pixels are revisited along poly-
gon boundaries. By constraining our discussion to
triangles, we specify the geometry by a triplet of verti-
ces {Py, P, P,}. Each side of the triangle is a half plane

50

visit problem.

defined by its endpoints. The intersection of the three
half planes specifies the pixels contained within the
triangle.’ The half plane equation is of the form

F(x,y)=Ax+By+C

where a point in space will lie on the half plane or on
either side of it. The sign of the plane equation indi-
cates the side of the plane that the point lies on. By
orienting the half planes consistently we force the
polarity of the plane equations to have the same sign
for the region inside the triangle, and the opposite
sign for points outside the triangle. Along a common
edge, two adjacent triangles will have opposite orien-
tations for the common edge-plane equation. The real
problem is that the equal-to-zero condition (the case
when a point lies exactly on the edge) exists on either
side of the common edge for two adjacent triangles,
and, hence, such pixels are visited twice (see Figure
5).

One way of solving this problem is to recognize that
the depth computation at the revisited pixel is exactly
the same along the common edge for both triangles;
therefore we can prevent the pixel from being
revisited by ignoring the equal-to-zero case in the z-
buffering comparison operation. Aslong as the depth
computations are performed accurately enough, we
can get the depths to match at the same pixels where
the plane equations become exactly equal to zero.
This prevents pixels from being revisited along patch
boundaries.

Another way of solving this problem is to discrimi-
nate on the basis of how plane equations are handled
concerning the equal-to-zero condition. The common

IEEE Computer Graphics & Applications

Render Refined Render
Pixel Map Pixel Map Pixel Map
) (M U])
Super.Pixel with BLEND*
FES B bt B
¢ - -
Display ™ Initialized to
default state
VALY MVANAY o each swe-
| pixel position

Render
Pixel Map
(2

Normal Rendering Pixel Maps
Normal Display Size

in & pixel map.

be First Pass Sub-Pixel Postion

Second Pass Sub-FPixel Position

BLEND valus is constant for each SubPixel

Render
Pixel Map

&)

Normal Rendering Pixel Maps
Normal Display Size

a b

Figure 6. Rendering primitives (a) without antialiasing, (b) with antialiasing.

edge treatment for one triangle includes points that
fall exactly on the edge, while the adjacent triangle
excludes them. This method does not rely on depth
computations to be accurate, but it does add another
level of complexity to the rendering system.

The method presented here uses the z-buffering
technique to exclude pixels that were previously vis-
ited as part of either the current object or a different
object. As a result, additional transparency layers are
not created if two or more pixels have the same
depths.

Antialiasing

The Virtual Pixel Maps concept also helps to solve
the problem of antialiasing. There are several known
methods for solving the aliasing problem in com-
puter-generated images.®® One such method is to in-
crease the spatialresolution, causing sample points to
occur more frequently (this method is referred to as
supersampling). Another method is to represent each
sample point with a finite area, rather than an infini-
tesimally small spot (referred to as area sampling). We
describe a multipass method that integrates the area-
sampling technique over time.

In the supersampling approach, the scene is ren-
dered with the intensity and depth calculations per-
formed at the enlarged resolution. Then a convolution
filter of the desired characteristics is applied to the
supersampled display and filtered down to normal
display dimensions. By definition, the intensity and
depth buffers are larger by a factor equal to the size of
the filter kernel.

July 1989

The incremental approach described here uses one
additional pixel map of normal display dimensions.
The pixel map is used successively to refine the final
image (see Figure 6). Instead of sampling the screen
geometry at a higher integer resolution, we append
additional bits of fraction at each screen position. We
map the filter kernel to a default pixel area in screen
space, where each filter coefficient is associated with
a subpixel position in the assigned pixel geometry.
The integration is achieved by blending contributions
from each subpixel position, as each filter kernel coef-
ficient is convolved.

A way of understanding this operation is to view a
display pixel as a superpixel consisting of an array of
subpixels. Each subpixel position is addressed by the
fractional bits of the screen coordinate. Instead of
computing a pixel intensity at a fixed position within
a pixel (say the pixel center), we allow the geometry to
intersect several subpositions within the pixel and
accumulate the intensity contribution at each sub-
position (see Figure 6b). As the integration proceeds,
this has the effect of smoothing transitions along edge
boundaries (see Figure 7). It is important to realize
that the fractional bits allow the geometry to be
scanned at a higher resolution, but the pixels that are
selected still fall on the normal resolution grid points.

As part ofimplementing this successive refinement
algorithm,® the chosen filter coefficients are mapped
to a corresponding set ofblending coefficients (see the
Appendix), which in effect become linear pixel map
operators in blending the current and refined pixel
maps. The scene is rendered several times, equal to
thearea of the filterkernel. Each passisrendered into

51

b

Figure 7. The multipass antialiasing technique. The
database shows a Ford 2000X, which has approxi-
mately 75,000 triangles, rendered nine times using a
3 x 3 triangular filter: (a) the final display, (b) final
display with rear wheel magnified to show the effects
of antialiasing. (Image courtesy of David Godsell,
Advanced Vehicle Simulation, Ford Motor Com-
pany.)

a scratch pixel map for a specific subpixel position.
This vperation is followed by the pixel-map operation
that refines the final image. Before each rendering
phase. the scratch and z pixel maps are initialized to
their default state. The method can be summarized as
follows:

;3
InitPixeliMap
Renderlbiects () ;
RefinePixelMayp (scratch pix_map,
refine plx map,klend coeff) ;

;

The benefits of this approach compared with the
supersampling approach are obvious. The total
amount of pixel map space is always a constant, re-
gardless of the size of the filter kernel. In addition, the
successive refinement technique allows the user to
view the results as the image is integrated, without
having to wait until the end of the rendering and
filtering stages. The final image begins to look anti-
aliased in the first few passes. especially if the sub-
pixel positions are visited in a weighted manner.
Because of the incremental approach, the user experi-
ences an apparently faster image presentation than
with the supersampling approach, even though the
overall rendering time is nearly equivalent.

From an applications standpoint, the only ditfer-
ence between managing an antialiased image and one
that is not is that the sceue is rendered many times—
the interfaces and data structures remain the same.
This approach provides a single consistent interface
to the rendering stage so that nothing special needs to
be done when antialiasing is turned on. Because anti-
aliasing is enabled so easily, applications can choose
not to antialias, while, say, animation is in progress,
and then enable antialiasing when the image reaches
a quiescent state. Because of the incremental ap-
proach, the final image quality improves almost im-
mediately. Finally, on most machines, the system
implications of acquiring pixel maps that are 9, 16, or
25 times larger than the display buffer are severe.
Memory limitations can have a drastic impact on the
final perceived rendering performance.

Transparency with antialiasing

Combining antialiasing with transparency is rela-
tively straightforward. Multiple passes of the trans-
parency algorithm yield a pixel associated with a
specific subpixel position; accumulation of the image
for the other subpixel positions results in the final
antialiased image. Algorithmically this can be ex-
pressed as follows:

GetPixelMap (refine_pix_map,
cpague_pix map) ;
for (i=0; i<kernel
for {i=0; d<kernel y; 3 ++) |
InizPixelMap (opaeue_pix_map) ;
RenderOpagualbjects ;

)

X701

IEEE Computer Graphics & Applications

GetPixelMap (sort pix map) ;
for (;;) |
InitPixelMap (sort pix_map) ;
RenderTransparent®bjects ;
BlendPixelMaps (sort_pix map,
opague_pix_map) ;
Query (PixelCount) ;
if (PixelCount < threshola)break ;
}

ReleasePixelMap (sert pix mag) ;

RefinePixelMars (opaque pix map,
refine pix_map,blend coeff) ;

JitterlInX ;

J

JitterIny ;

Incorporating antialiasing in the rendering
pipeline

The method presented here renders polygons
through the notion of plane equations, where the ge-
ometry is defined to be contained within the union of
the intersecting planes.® The basic operation of in-
cluding additional fractional bits for each screen po-
sition is easily applicable to other scan-converting
techniques.

To incorporate antialiasing in the framework of a
rendering algorithm, we require that each vertex coor-
dinate be specified with additional bits of fraction,
which establish the contributions at a subpixel posi-
tion. The fractional bits are incorporated in the com-
putation of the plane equations, which by definition
now have fractional and integer components. All the
decision-making methodology for determining the
pixels that are inside the polygon remains the same. If
we assume that we need N bits of fraction for each of
the x and y coordinates, the plane equations will re-
quire an additional 2Nbits of range. If we assume that
the largest pixel map we will consider is 4K x 4K, and
we allow 4 bits of fraction for the coordinates, we need
amaximumof 32(12+ 12 +4 +4) bits assigned to solve
the plane equation.

As we jitter the image over the subpixel positions,
the rendering algorithm offsets the vertex coordinates
by the fractional coordinates of the current subpixel
position, which inturn are incorporated into the alge-
braic equations. At a specific screen position, the
plane equations are obtained as

F(xint, yint) =
xint*A + yint*B + C - (xfrac*A + yfrac*B),

July 1989

where A=y, - y,, B=X; = X, C=y*X, = X*¥,
xint = int(x = xvertex + xjitter),

yint = int(y = yvertex + yjitter),

xfrac = frac(x),

yfrac = frac(y).

In addition to adjusting the spatial coordinates to
subpixel positions, we also need to adjust correctly
the algebraic equations for intensity and depth. Simi-
larly, it is desirable to associate additional bits of frac-
tion for the lighting and depth components. Linearly
interpolated (z,i) equations become

o dz | o dz
Z(xint,yint) = Z(vertex) — (xfrac*dx + yfrac* dy)

. . di di
I (xint,yint) = [(vertex) — (xfrac* dx + yfracx dy)

Conclusions

This article has described some of the rendering
algorithms that benefit from the power of the Virtual
Pixel Maps technique. Two specific algorithms,
namely transparency and antialiasing, were picked as
examples to illustrate the concept. Many other algo-
rithms could easily be adapted to such an environ-
ment, where a large number of attributes are needed
per pixel. It is important to recognize that since the
rendering algorithms described here are implemented
in hardware on a Stellar GS1000, the level of user
interaction remains exceptional. Apgar® presents a
detailed description of a hardware system (Stellar
(GS1000) that embodies the concepts described here.

Future work

The Virtual Pixel Maps feature can be used to pro-
duceshadow effects. Williams® presenteda method of
generating shadows in two passes: In the first pass,
the scene is rendered from the light source’s point of
view such that the depth values closest to the light
source are stored in a light depth pixel map. In the
second pass, the scene is rendered with respect to the
camera’s position. A point on the object is mapped to
a point in the light source space. The transformed
depth is compared with the object depth closest to the
light source, as stored in the light depth pixel map.
The point is considered to be in shadow if the trans-
formed depth isbehind the stored depth. An intensity
attenuation factor'® can be derived that indicates the
proportion of the surface in shadow, which is then
used in the shading calculations. For scenes rendered

53

with multiple light sources, this process is repeated
with separate light depth pixel maps assigned to each
light source.

Similarly, the Virtual Pixel Maps concept can be
used for such environment mapping functions as tex-
ture mapping and reflection mapping. Pixel maps
store texture or reflection information. The rendering
interface is provided with mapping parameters, spec-
ified on object vertices that map points in environ-
ment space to points in object space. As the mapping
function is interpolated across the object, the environ-
ment colors are accessed from the pixel maps, which
are then incorporated in the lighting and shading
equations. u

Acknowledgments

I would like to thank Brian Apgar for suggesting that
I write this article. I also thank all the people in the
graphics hardware group at Stellar for their comments
and ideas while I was writing the article, as well as for
their input while I was implementing these tech-
niques on the Stellar GS1000. Special thanks go to
George Mitsuoka for providing valuable assistance
during the architectural and implementation stages. I
would also like to thank Clare Campbell for her help
in preparing this document.

References

1. A. Fournier and D. Fussell. “On the Power ol the Frame
Buffer,” ACM Trans. Graphics, Vol. 7, No. 2, Apr. 1988, pp.
102-128.

2. B. Apgar, B. Bersack, and A. Mammen. “A Display System tor
the Stellar Graphics Supercomputer Model GS1000,” Com-
puter Graphics (Proc. SIGGRAPH), Vol. 22, No. 4, Aug. 1988,
pp. 255-262.

3. M. Sporer, F. Moss, and C. Mathias, “An Introduction to the
Architecture of the Stellar Graphics Supercomputer,” Digest of
Papers Compcon 88, CS Press, Los Alamitos, Calif., 1988, pp.
464-467.

4. D.S. Kay and D. Greenberg, “Transparency for Computer Syn-
thesized Images,” Computer Graphics(Proc. SIGGRAPH), Vol.
13, No. 2, Aug. 1979, pp. 158-164.

5. H.Fuchsetal, “FastSpheres, Shadows, Textures, Transparen-
cies, and Image Enhancements in Pixel-Planes,” Computer

Graphics (Proc. SIGGRAPH), Vol. 19, No. 3. July 1985, pp.
111-120.

6. L. Carpenter, “The A-buffer, an Antialiased Hidden Surface
Method,” Computer Graphics (Proc. SIGGRAPH), Vol. 18, No.
3, July 1984, pp. 103-108.

7. F. Crow, “The Aliasing Problem in Computer Generated
Shaded Images,” CACM, Vol. 20, No. 11, Nov. 1977, pp. 799-
805.

8. I'C.Crow, “A Comparisen ol Antialiasing Techniques,” CG&'A.
Vol. 1, No. 1, Jan. 1981, pp. 40-48.

9. L. Williams, “Casting Curved Shadows on Curved Surfaces,”
Computer Graphics (Proc. SIGGRAPH), Vol. 12, No. 3, Aug.
1978, pp. 270-274.

10. W. Reeves, . Salesin, and R. Cook. “Rendering Antialiased
Shadows with Depth Maps,” Computer Graphics (Proc. SIG-
GRAPH), Vol. 21, No. 4, July 1987, pp. 283-291.

Appendix: Blending coefficients

As discussed earlier, we need to calculate a set of
blending coefficients that maps to the chosen set of
filter coefficients. The blending function operates be-
tween two image pixel maps in the following manner:

I, =oR+BI,_,

where R is the currently rendered pixel map, Iis the
destination pixel map, which is the pixel map that is
being successively refined, and |o., B} are the blending
coefficients.

The final pixel intensity is determined as

54

where the filter coefficient F, is applied to I, the
intensity at pixel position P,

It is desirable to maintain the final value of Ito be in
the same numeric range as I, and hence the filter
coefficients {Fn} should be normalized such that

N {
2 F,=1
n=0

For each pass of the filter kernel, we want to deter-
mine a pair of {an, B, that successively blends the

IEEE Computer Graphics & Applications

image. We need to map a set qf {Fn} to a set of{an, BH}
for a set of subpixel positions 1Pn}:

Iy = oy Ry, with B, =0

L =o,R +B,],=oyR; +B,0,R,
L = o,R, + B,1, = 0,Ry + B,04 R + B.B,a,R,

Generalizing, we get

Iy=o0yRy+Byoy_ 1By +ByBy_ 10y By o+ +

BBy 1By o Brogry

As we successively refine the image, it is desirable
to maintain normalized intensity ranges across each
pass. This implies that

o,+B,=1,withp,=0

After N passes, the final refined image is the same as

theimage produced by applying the convolution filter
to the supersampled image. Hence

N
IN= Z P:x In
n=0
We can now map the filter coefficients {Fn} to
{an,Bn}:

Fy=oy
Fy_1=Bnoy_4
Fy_2=BnBy-10n_

Fo=By By 1By 2B
Given that o, + B, = 1, we have

ony=Fy, By=1-Fy

o __FN—1_ Fy_4
N1 By 1-Fy
July 1989

F

_ N-2 Fy_s

Oy o= =
N2 BNﬁN—] 1_FN_FN—1

Generalizing,
FH
o =
TN =Fy=Fy_ 1 Fhy
N
Since ZFnzl
n=0
Fn
(xﬂz e vas
FytFy g+t Fyp-Fy= = F,
S N
Fo+F ++ +F,
F
B,=1-o0,=1 “

nT U F,+F+ - +F,

Fo+F ++F, _,
T FytF,++F,

We now have a means of calculating the blending
coefficients from a set of filter kernel coefficients.

Abraham Mammen is a member of the graph-
ics hardware group at Stellar Computer, where
{ he is responsible for algorithm and microcode
development for the rendering system on the
Stellar GS1000. Before joining Stellar in 1986,
he worked at Computervision in high-end ge-
ometry and rendering accelerators, and earlier
atGeneral Instrument Corporation as a systems
architectresponsible for microprocessor devel-
opment for digital signal processing and visual
entertainment applications. His interests focus on graphics archi-
tectures and algorithms for scientificand engineering visualization
applications.

Mammen received his BE in electrical engineering in 1978 from
Birla Institute of Technology and Science, Pilani, India, and his MS
in electrical engineering and computer science in 1980 from the
State University of New York at Stony Brook. He is a member of
ACM and IEEE.

Mammen can be contacted at Stellar Computer, 85 Wells Ave.,
Newton, MA 02159.

55

