
Transparency and Antialiasing Algorithms 
Implemented with the Virtual Pixel Maps 

Technique 

Several high- quality rendering algorithms attempt 
to present a form of realism typically lacking in most 
computer-generated graphics displays. Visual cues 
that portray df"pth offield, lighting and optical effects, 
shaclovvs, material properties. physical phenomena, 
etc .. aid tremendously in the overall perception of an 
image. Unfortnnately , rendering systems that are 
good at displaying shaded geometrical constructs are 
not well suited for solving tbe special needs of high­
quality rendering effects. This is primarily because 
these algorithms require a considerahle amount of 
information per pixel and nEwd constructs at tho pixel 
level typically unavailable in most rendering sys­
tems. A dedicated frame buffer with a fixed number 
of bits per pixHl is highly restrictive in supporting 
these algorithms. i\ system with a virtual frame buffer 
does not have such restrictions; this article attempts 
to establish the benefits of such a device. 

Abraham Mammen 
Stellar Computer 

The application views the Virtual Pixel Map archi­
tecture as regular virtual memory; it is a resource that 
is dynamically available to assign all almost arbil.rary 
number of attributes per pixeL Instead of viewing a 
pixel just as having color and depth infonnation, the 
Virtual Pixel Map concept allows the definition of a 
pixel to be whatever the application requires. With 
this flexibility, designers of rendering algorithms can 
use methods that are inherently fast and simple, but 
require a cOl1sidHrahle amount of memory. Rendering 
techniques that were previously too computationally 
expensive can now be efficiently managed within the 
i'ramHwork of a graphics computer system. 1 

This article .lS limited to techniques of implement­
ing high-quality antialiased transparency rendering 
algorithms, although other rendering operations-fln­
vironment mapping, shadows, image processing, 
etc.-can hH easily implemented using the Virtual 
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Pixel Maps architecture. Several of the techniques 
presented here are used by the graphics hardware 
rendering system on the Stellar Graphics Super­
computer Model GS1000.2•3 

Transparency 
Transparency effects are synthesized by linearly 

combining intensity contributions from the two near­
est pixels in z space as 

where 11 is the intensity of the pixel closer to the eye 
point, 12 is the intensity of the pixel immediately be­
hind it, and t is the transparency factor. If t == 0, the 
pixel is invisible. If t == 1, the pixel is opaque.4 

The transparency factor models the characteristics 
of the material of the object and is usually specified in 
one of two ways: either as a constant term for the 
entire object or in some nonlinear fashion over the 
surface of the object.4 For the latter case, one such 
criterion could be based on the curvature of the object; 
hence the transparency factor would be a function of 
the surface normal. From the rendering system's 
standpoint, this nonlinearity is modeled by comput­
ing the transparency factor explicitly at points on the 
object (on the basis of some physical characteristic 
being modeled) and then linearly interpolating across 
the geometry. This is similar to lighting calculations 
computed at the vertices of polygons and then inter­
nally interpolated. In the simple model, the rendering 
system associates a constant transparency factor for 
the entire object. 

Description of the algorithm 
To render transparent objects correctly, it is impor­

tant to process pixels in a depth-sorted order, so that 
we can incrementally obtain contributions from all 
the transparent layers in the scene. It is especially 
difficult to incorporate transparency in a hidden-sur­
face algorithm that uses z-buffering, because the ren­
dering is performed in no specific order. What makes 
z-buffering an attractive technique for doing hidden­
surface removal becomes a major drawback for algo­
rithms that inherently function on the basis of some 
form of sorting operation. This is especially true for 
objects that intersect as well as interpenetrate each 
other. It is extremely difficult to do object-level sort­
ing at the application level, so that objects are pre-
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sented to the rendering system in a back-to-front 
order. 

We would like to find a solution that does not force 
the application to do depth sorting but still uses z­
buffering as a hidden-surface removal tool for all the 
simplicity it provides. The Virtual Pixel Maps tech­
nique is an ideal vehide for solving such pixel-inten­
sive algorithms. We can reduce a difficult problem to 
a series of simpler problems by performing sorting at 
the pixel level and accumulating the transparency 
effect on a multipass basis. For each pass, the objec­
ti ve is to find all the transparent pixels that arc closest 
to the opaque pixels by sorting the pixels in depth 
order. At this point, we blend the transparent and 
opaque pixels. Now the farthest transparent pixel be­
comes the new opaque pixel. This, in effect, is a mov­
ing-depth algorithm, where the pixel depth being 
processed moves toward the eyepoint as transparent 
layers are resol ved. 

We assume that the transparent objects in a scene are 
tagged separately, so that only the opaque objects are 
initially rendered into the opaque pixel maps. For 
each pass of the transparent objects, we would like to 
find the set of transparent pixels closest to (in front of) 
the corresponding set of opaque pixels (see Figure 1). 
T�e sorting operation is performed with two depth 
pIxel maps: the normal opaque depth pixel map and a 
sort depth pixel map. As each transparent pixel is 
processed, the current computed depth is compared 
with the stored opaque depth and the stored sort 
depth (see Figure 2a). If the current depth is in front of 
the opaque depth and behind the sort depth, then this 
transparent pixel is closer to the opaque pixel and 
hence becomes the new sort pixel (i.e., the current 
depth, intensity, and alpha values are stored in the 
respective sort pixel maps). Transparent pixels be­
hind opaque pixels are trivially rejected. After all the 
transparent pixels have been rendered, the pixels in 
the sort pixel maps represent those that are closest to 
the opaque pixels. Now we can blend the opaque and 
the sort intensity pixel maps and also move the 
opaque depth closer to the eye position by updating 
the opaque depth from the stored sort depth value 
(Figure 2b). This operation continues until all the 
transparent layers are resolved. At each pixel, we 
store the following attributes (see Figure 2): 

• Opaque depth 
• Opaque intensity 
• Sort depth 
• Sort intensity 
• Sort transparency factor (alpha) 
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Figure 1. Finding the transparent pixel closest to the opaque pixel. 
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Figure 2. Multipass transparency: (a) geometry rendering phase, (b) alpha blend phase. 

The number of passes needed for completion is a 
function of the maximum number of transparent lay­
ers at any pixel. At the end of each pass, the graphics 
application needs to know whether additional passes 
are required. The rendering stage of the graphics pipe­
line supplies a flag, which is queried to determine 
when to terminate. To keep track of the number of 
unresolved layers, the sort pixel maps also store a visit 
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flag, which is set whenever the z comparison tourney 
finds a transparent pixel in front of the opaque pixel. 
During the pixel-map-blending operation, the render­
ing stage accumulates the number of pixels that were 
visited, a state available for the graphics application 
to query. The simplest method is for the application to 
continue re-rendering the scene until the total num­
ber of pixels having transparent layers reaches some 
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Figure 3. The multipass transparency technique. The 
database is an "unterlafetle," which has approximately 
4,500 triangles. At this viewing angle, there are 16 trans par- e 
ency layers: (a-c) Passes illustrating the incrcmental manner in which the scene is built. (d) The final imagc 
after 16 passes. The image was also antialiased by rendering the geometry nine times using a 3 x 3 triangular 
filter. Thus 144 passes (16 x g) were needed to generate the image. (e) A magnified region of (d) showing the 
overall effp.r:t oftransparency and anti aliasing. 
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Summary of operations 
T118 lllliltipass t8l:hnique is sUITllIlariz8d by the ful­
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Typical sequence 
Get?ize_Map (opaque pix �ap) 

IritPixp�Map (opaq�e x rap) 

FenclerODaqueObjects () 

�;et?ixeH13.p (sert p�x�rr3.p) 

:0::::- (;,o) 
IrctPixelMnp (sort pi map) 
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Rendering stuge 
for (transpare�t objects) 

for (pixels_in_object) 

if ((Zcompcted > Zopaque) 

&& (Zcomputed < Zsort)) 

Vsort 

Zsort 

Isort 

Asort 

1 ; 
Zcomputed 

Icomputed 

Acomputed 

Blending Stuge 
PixelCount = 0 ; 
for (pixels In_plxel_map) 

if (Vsort ! = 0) { 
zopaque = Zsort ; 

Iopaque += Asort* (Isort - Iopague) 

PixelCount++ ; 

Optimizations 

The simple approach of rendering the entire scene 
for each transparent pass is not terribly efficient for 
the geometry and rendering pipeline. To improve effi­
ciency, we dynamically reduce the number of' trans­
paront objects that need to be transformed and 
rendered as we proceed through the various passes. 
During the rendering phase, we determine if any por­
tion of the object is within the domain of the opaque 
depth. If the entire object is behind the moving 
opaque depth space covered by the object, then that 
object need not participate any further in the transpar­
ency operation. If portions of' the object are still in 
front of the opaque depth, then the object cannot be 

released from consideration and hen ce needs to be 
invoked for the next pass. 

We assume that each object in the scene is identified 
by a pointer to its data structure. As part of the normal 
rendering operation of finding the transparent pixel 
closest to the corresponding opaque pixel, we can 
detect whether any portion of the object is in front of 
the current opaque layer. If all the pixels in the object 

are behind the corresponding opaque pixels, then the 
object cannot contribute toward resolving transpar­
ency and hence is tagged as inactive. If one or more 
pixels in the object lie in front of the opaque pixels, 
then the object is tagged as active. The state of the 
object is exported to the application by maintaining 
an object pointer list; the current object pointer is 
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appended if the object is active; otherwise a null 
pointer is appended. 

After rendering all the transparent objects in the 
scene, the application invokes the active objects in the 
list through the geometry and rendering pipeline. As 
the transparency layers get resolved, each pass re­
quires fewer elements to be processed. For scenes 
where dense transparent layers exist in sparse areas, 
such a technique yields a significant performance im­
provement. Here is a typical sequence: 

for (transpare�t_objects) { 
ObjectPointer = NULL ; 
for (pixels in object) { 

if ((Zcomputed > Zop ague) 

&& (Zcomputed < Zsort)) 

Vsort 

Zsort 

Isort 

Asort 

Zcomputed 

Icomput ed 

Acomputed 

if (Zcomputed > Zopaque) 

Object?ointer = 
CurrontObjectPointer 

*PointerPixMap++ = ObjectPointer 

Pixel map initialization 

Between passes, the application reinitializes several 
pixel maps. The Zsort pixel map is initialized to a 
depth value at least as far as the eye position, so that 
during the rendering phase, the sorting operation cor­
rectly determines which transparent pixel is closest to 

the opaque pixel. Also, the Vsort pixel map is initial­
ized to O. The rendering stage marks pixels that have 
outstanding transparent layers by setting the Vsort 
value to 1. 

Transparent spheres 

The multipass technique described also applies to 
spheres. Since the transparent layers arc resolved on 
a per-pixel basis, it is possible to correctly blend 
spheres that both intersect and interpenetrate each 
other. Transparent spheres are synthesized by render­
ing the front and rear shells, thus associating two dis­
tinct transparency layers for every pixel within the 
sphere. Polygons and spheres can be freely intermin­
gled in the construction of the scene. As with poly­
gons, opaque spheres are rendered before invoking 

transparent spheres. Figure 4 is an example of this 

IEEE Computer Graphics & Applications 



d e 

t!�chniq ll(� applind to a dis pl<n ( ( JIlsisling of a clllsl!�r 
of sJ1Jwn�s that intlll'Sect (mc:h ()II!!'!'. 

Another method of implementing 
transparency 

The iIIJO\'ll-mfmti(JIlHlI IransJldn�l1( \ alg()rithm can 

bn sJighth m()clifi(�d to ru<[uiw 11'\\1'1' bits per pixul 
(and Jwncll fewer pixel maps), at tlw I'XpllnS() or in­
cH'asing the (]\l�rall nLlJllIH�r ofpasscs, Inlhc prr�\'i()lIs 

impll'nwnlation. tlw sort pix!)) ll1ilP" \n�n� defincd for 

sluring til!' depth. intl 'nsil \'. alpha, alld \' isit nag, In­
stpad, \\l' 111)\\' ha\l� just o]w sort pi''\.l�lll1ap dl)fin l ' d for 

tlw dllpth. which is usucl to cll�tl�rIllilH' the pixlll cl(),;­
est to the' clIrrnntl\' ddilWd llpdljlW pixd: tlw sorting 
proc:pduri' is identiull to the PrP\ilJLlS llwthod , I [()\\'­
l�\'()r, no lighting c:alr:lll;ltiol1s am IIl;llh� wh ile W() filld 

tlw farthest transparent pixd, Through 11 s!)(ond pass. 

\\() fn-rl)ndcr [hl� sume, \Vhf'n thl) r:urffmt dl'pth 

lIlCllclws tlw storecltransparenl d llPth in tlw sort pixl'I 

nHlp. lIT klluw that this pixpl is a \'a[ l d canclidatl� for 

the blending upuraliun, The lighting Illude! is ap) llil' d 
Cit t his stage. and as Iwfow WP Illl)\ U tht: npaqlw cil'pt h 
t[)warcl tlw (�vc: point IJ\ llpdc1tillg its \ alliu to thul:ur­
rent depth .  

This llwthod n�quires t\\ll [J<lSS!)S t o  rnsol\p Olle: 
layHI' lJf transparency. whilI' the )lrt" ious ll wthod )'f)-

l\ll�· Hl8H 

c 

Figure 4. Multipass transpar­
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Triangle 1 

if ((Zcomputed > Zopaque) 
&& (Zccmput ed < Zsort)) 

Zsort = Zcomput ed ; 

Rendering stage 2 
for (transparent objects) 

for (pixels_in_object) 
if ((Zcomputed == Zsort ) 

Zopaque = Zsort ; 
Iopaque += Acomputed 

* (Icomputed-Iopaque) 
PixelCount ++ 

Multiple pixel visit problem 

Most rendering algorithms visit pixels multiple 
times along the common edge boundaries of poly­
gons. For normal rendering operations, this does not 
present a serious problem, because the intensity and 
depth computations are so close for multiple in­
stances of the same pixel that no noticeable artifacts 
are observed. Occasionally, for databases that have 
inconsistent surface normals, this results in erratic 
behavior, especially around silhouette edges. Visiting 
pixels multiple times for a transparency algorithm has 
drastic effects, because all such pixels will apparently 
have more transparent layers and consequently ex­
hibit more intensity saturation than surrounding 
pixels. This translates to discrete bright spots, which, 
of course, are immediately noticeable. 

Let us examine why pixels are revisited along poly­
gon boundaries. By constraining our discussion to 
triangles, we specify the geometry by a triplet of verti­
ces {Po' P1, Pz}. Each side of the triangle is a half plane 
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• 

Triangle 1 Pixels 
Triangle 2 Pixels 

Pixels with function 
F = 0 for both triangles Figure 5. Multiple pixel 

visit problem. 

defined by its endpoints. The intersection of the three 
half planes specifies the pixels contained within the 
triangle.5 The half plane equation is of the form 

F(x,y) = Ax + By+ C 

where a point in space will lie on the half plane or on 
either side of it. The sign of the plane equation indi­
cates the side of the plane that the point lies on. By 
orienting the half planes consistently we force the 
polarity of the plane equations to have the same sign 
for the region inside the triangle, and the opposite 
sign for points outside the triangle. Along a common 
edge, two adjacent triangles will have opposite orien­
tations for the common edge-plane equation. The real 
problem is that the equal-to-zero condition (the case 
when a point lies exactly on the edge) exists on either 
side of the common edge for two adjacent triangles, 
and. hence. such pixels are visited twice (see Figure 

5). 
One way of solving this problem is to recognize that 

the depth computation at the revisited pixel is exactly 
the same along the common edge for both triangles; 
therefore we can prevent the pixel from being 
revisited by ignoring the equal-to-zero case in the z­
buffering comparison operation. As long as the depth 
computations are performed accurately enough, we 
can get the depths to match at the same pixels where 
the plane equations become exactly equal to zero. 
This prevents pixels from being revisited along patch 
boundaries. 

Another way of solving this problem is to discrimi­
nate on the basis of how plane equations are handled 
concerning the equal-to-zero condition. The common 
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edge treatment for one triangle includes points that 
fall exactly on the edge, while the adjacent triangle 
excludes them. This method does not rely on depth 
computations to be accurate, but it does add another 
level of complexity to the rendering system. 

The method presented here uses the z-buffering 
technique to exclude pixels that were previously vis­
ited as part of either the current object or a different 
object. As a result, additional transparency layers are 
not created if two or more pixels have the same 
depths. 

Antialiasing 
The Virtual Pixel Maps concept also helps to solve 

the problem of anti aliasing. There are several known 
methods for solving the aliasing problem in com­
puter-generated images.6oB One such method is to in­
crease the spatial resolution, causing sample points to 
occur more frequently (this method is referred to as 
supersampling). Another method is to represent each 
sample point with a finite area, rather than an infini­
tesimally small spot (referred to as area sampling). We 
describe a multipass method that integrates the area­
sampling technique over time. 

In the supersampling approach, the scene is ren­
dered with the intensity and depth calculations per­
formed at the enlarged resolution. Then a convolution 
filter of the desired characteristics is applied to the 
supersampled display and filtered down to normal 
display dimensions. By definition, the intensity and 
depth buffers are larger by a factor equal to the size of 
the filter kernel. 
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The incremental approach described here uses one 
additional pixel map of normal display dimensions. 
The pixel map is used successively to refine the final 
image (see Figure 6). Instead of sampling the screen 
geometry at a higher integer resolution, we append 
additional bits of fraction at each screen position. We 
map the filter kernel to a default pixel area in screen 
space, where each filter coefficient is associated with 
a subpixel position in the assigned pixel geometry. 
The integration is achieved by blending contributions 
from each subpixel position, as each filter kernel coef­
ficient is convolved. 

A way of understanding this operation is to view a 
display pixel as a superpixel consisting of an array of 
subpixels. Each subpixel position is addressed by the 
fractional bits of the screen coordinate. Instead of 
computing a pixel intensity at a fixed position within 
a pixel (say the pixel center), we allow the geometry to 
intersect several subpositions within the pixel and 
accumulate the intensity contribution at each sub­
position (see Figure 6b). As the integration proceeds, 
this has the effect of smoothing transitions along edge 
boundaries (see Figure 7). It is important to realize 
that the fractional bits allow the geometry to be 
scanned at a higher resolution, but the pixels that are 
selected still fall on the normal resolution grid points. 

As part of implementing this successive refinement 
algorithm,5 the chosen filter coefficients are mapped 
to a corresponding set of blending coefficients (see the 
Appendix), which in effect become linear pixel map 
operators in blending the current and refined pixel 
maps. The scene is rendered several times, equal to 
the area of the filter kernel. Each pass is rendered into 
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Figure 7. The multipass anti aliasing technique. The 
database shows a Ford 2000X, which has approxi­
mately 75,000 triangles, rendered nine times using a 
3 x 3 triangular filter: (a) the fmal display, (b) final 
display with rear wheel magnified to show the effects 
of antialiasing. Umage courtesy of David Godsell, 
Advanced Vehicle Simulation. Ford Motor Com­
pany.) 

a scratch pixel map for a specific subpixel position . 
This uperation is followed by the pixel-map operation 
that refines tbe final image. Before each rendering 
phase . the scratch and z pixel maps are initialized to 
their default state. The method can be summarized as 
follows: 
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.:-:e [in�2. ___ p.ix���:nap} ; 
for (i=C; i < kernel x; i ++� 

lc,r (�=C; ,., < KCl',:;vl y; l t+) { 
:nltrixelKa� 13�!dl�t pl� �ap) 

RenderJbjects () ; 

Re f ineP ixelMap (�3C rat Cr-:.hh.P:i. x_rnap 1 
refi :1e_pix __ map, blerld_coef f) ; 

Ji -:� te:::-:nX 

Ji ::terlnY ; 

The benefits of this approach compared with the 
sllpersampling approach are obvious. The total 
amount of pixel map space is always a constant. re­
ganUess of the size of the filter kernel. In addition, the 
SHccHssive refinement technique allows the user to 
view the results as the image is integrated, without 
having to wait until the end of the rendering and 
filtering stages. The final image begins to look anti­
aliased in the first few passes. especially if the sub­
pixel positions are visited in a weighted man nero 
Because of the incremental approach, the user experi­
ences an apparently faster image presentation than 
with the supersampling approach. even though the 
overall rendering time is nearly equivalent. 

From an applications standpoint, the only differ­
ence between managing an antialiased image and one 
that is not is that the sceue is rendered many times­
the interfaces and data structures remain the same. 
This approach provides a single consistent interface 
to the rendering stage so that nothing special needs to 
be done when antialiasing is turned on. Becausn anti­
aliasing is enabled so easily, applications can choose 
not to antialias, while, say, animation is in vrogress, 
and then enable antialiasing whfm thn imagn rear;hes 
a quiescent state. Because of the incremental ap­
proach, the final image quality improves almost im­
mediately. Finally, on most machines, the system 
implications of acquiring pixel maps that are!), 16, or 
25 limes larger than tho display buffer are severe. 
Memory limitations r;an have a drastic impact on the 
final perceived rendering performance. 

Transparency with anti aliasing 
Combining antialiasing with transparency is rela­

tively straightforward. Multiple passes of the trans­
parenr:y algorithm yield a pixel associated with a 
specific subpixel position; accumulation of the image 
for the other subpixel positions results in th!) final 
antialiased imagn. Algorithmically this can be ex­
pwssed as follows: 

GetPlxelMap (=e!:Ge eix map. 

opaque_pix_map) ; 

for (i�-;."OC; i<ke::::"ne:_x; i ++) { 

for (-=0; �<kerr;el y; � ++) 
Inic:PixelMap (opaque_pix_nae) 

RenderOpa.queObjects ; 
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SetPixelMap (sort_pix_map) ,­
for ( ; ; ) { 

InitPixelMap (sor�_pix_map) 
RenderTransparentObjects ; 

BlendP�xelMaps (sort_pix_map, 

opClqc;e_pix_map) ,­
Query (PixelCount) ; 
if (PixelCount < threshold)break 

ReleasePixelMap (sort_pix_map) ,­
RcfinePixelMaps (opaque_pix_map, 

refine_pix_map,blend_coeff) 
JitterlnX 

JitterInY; 

Incorporating anti aliasing in the rendering 
pipeline 

The method presented here renders polygons 
through the notion of plane equations, where the ge­
ometry is defined to be contained within the union of 
the intersecting planes.5 The basic operation of in­
cluding additional fractional bits for each screen po­
sition is easily applicable to other scan-converting 
techniques. 

To incorporate antialiasing in the framework of a 
rendering algorithm, we require that each vertex coor­
dinate be specified with additional bits of fraction, 
which establish the contributions at a subpixel posi­
tion. The fractional bits are incorporated in the com­
putation of the plane equations, which by definition 
now have fractional and integer components. All the 
decision-making methodology for determining the 
pixels that are inside the polygon remains the same. If 
we assume that we need Nbits of fraction for each of 
the x and y coordinates, the plane equations will re­
quire an additional 2Nbits of range. If we assume that 
the largest pixel map we will consider is 4K x 4K, and 
we allow 4 bits of fraction for the coord inates, we need 
a maximum of32(12 + 12 +4 +4) bits assigned to solve 
the plane equation. 

As we jitter the image over the subpixel positions, 
the rendering algorithm offsets the vertex coordinates 

by the fractional coordinates of the current subpixel 
position, which in turn are incorporated into the alge­
braic equations. At a specific screen position, the 
plane equations are obtained as 

F(xint, yint) = 

xint*A + yint*B + C - (xfrac*A + yfrac*B) , 
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where A = yz - YI' B = Xl - XZ' C= Yl*XZ - X1*Yz' 
xint = int(x = xvertex + xjittcr), 
yint = int(y= yvertex + yjitter), 
xfrac == frac(x), 
yfrac = frac(y). 

In addition to adjusting the spatial coordinates to 
subpixel positions, we also need to adjust correctly 
the algebraic equations for intensity and depth. Simi­
lar ly, it is desirable to associate additional bits of frac­
tion for the lighting and depth components. Linearly 
interpolated (z,i) equations become 

Z(xint,yint) = Z(vertex) - (xfrac* �� + yfrac* �;) 
I (xint,yint) == 1 (vertex) - (xfrac* d

di + yfrac* d
di) x - Y 

Conclusions 
This article has described some of the rendering 

algorithms that benefit from the power of the Virtual 
Pixel Maps technique. Two specific algorithms, 
namely transparency and antialiasing, were picked as 
examples to illustrate the concept. Many other algo­
rithms could easily be adapted to such an environ­
ment, where a large number of attributes are needed 
per pixel. It is important to recognize that since the 
rendering algorithms described here are implemented 
in hardware on a Stellar GS1000, the level of user 
interaction remains exceptional. Apgar2 presents a 
detailed description of a hardware system (Stellar 
GS1000) that embodies the concepts described here. 

Future work 
The Virtual Pixel Maps feature can be used to pro­

duce shadow effects. Williams9 presented a method of 
generating shadows in two passes: In the first pass, 
the scene is rendered from the light source's point of 
view such that the depth values closest to the light 
source are stored in a light depth pixel map. In the 
second pass, the scene is rendered with respect to the 
camera's position. A point on the object is mapped to 
a point in the light source space. The transformed 
depth is compared with the object depth closest to the 
light source, as stored in the light depth pixel map. 
The point is considered to be in shadow if the trans­
formed depth is behind the stored depth. An intensity 
attenuation factor10 can be derived that indicates the 
proportion of the surface in shadow, which is then 
used in the shading calculations. For scenes rendered 
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with multiple light sources, this process is repeated 
with separate light depth pixel maps assigned to each 
light source. 

Similarly, the Virtual Pixel Maps concept can be 
used for such environment mapping functions as tex­
ture mapping and reflection mapping. Pixel maps 
store texture or reflection information. The rendering 
interface is provided with mapping parameters, spec­
ified on object vertices that map points in environ­
ment space to points in object space. As the mapping 
function is interpolated across the object, the environ­
ment colors are accessed from the pixel maps, which 
are then incorporated in the lighting and shading 
equations. • 
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Appendix: Blending coefficients 

As discussed earlier, we need to calculate a set of 
blending coefficients that maps to the chosen set of 
filter coefficients. The blending function operates be­
tween two image pixel maps in the following manner: 

where R is the currently rendered pixel map, I is the 
destination pixel map, which is the pixel map that is 
being successively refined, and la, �f are the blending 
coefficients. 

The final pixel intensity is determined as 
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N 

1= I, Fin 
n=O 

where the filter coefficient Fn is applied to In' the 
intensity at pixel position Pn, 

It is desirable to maintain the final value of I to be in 
the same numeric range as In' and hence the filter 
coefficients iFni should be normalized such that 

N 

For each pass of the filter kernel, we want to deter­
mine a pair of {an' �n: that successively blends the 
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image. We need to map a set of {Fn) tu a set of lcxn• �n) 
for a set of subpixel positions 'IPn): 

10 = cxoRo. with �o = 0 

II = cxlR1 + �IIo = a1R1 + �lcxuRo 
[2 = cx2R2 + �i1 = cxzR2 + �2CX1R1 + �2�PoRo 

Generalizing. we get 

As we successively refine the image. it is desirable 
to maintain normalized intensity ranges across each 
pass. This implies that 

an + �n = 1, with �o = 0 

After N passes. the final refined image is the same as 
the image produced by applying the convolution filter 
to the supersampled image. Hence 

N 
IN= L F;,In n�O 

We can now map the filter coefficients {Fn) to 

{cxn'�n): 

FN=aN 
FN_l=�NaN_1 
FN_ 2 = �N �N_1aN_ 2 

Given that an + �n = 1. we have 

aN= FN, �N= 1- FN 

FN_1 FN-1 
aN-1=-R.-=1 _ F t'N N 
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Generalizing. 

N 
Since L Fn = 1 

n�O 

Fn 
a =�---=--------�=-�=-------�---n Frv + F N -1 + . . .  + Fo - F N - ... - Fn - 1 

Fn 

F 
� =l-a =1-

n 
n n 

Fo + F1 + ... + Fn 

Fo + F1 + ' "  + Fn - 1 
FO + F1 + ... + Fn 

We now have a means of calculating the blending 
coefficients from a set uf filter kernel coefficients. 
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