
ptg9898810

Additionally, multisampling using sample shading can add a lot more
work in computing the color of a pixel. If your system has four samples per
pixels, you’ve quadrupled the work per pixel in rasterizing primitives,
which can potentially hinder your application’s performance.
glMinSampleShading() controls how many samples per pixel receive
individually shaded values (i.e., each executing its own version of the
bound fragment shader at the sample location). Reducing the
minimum-sample-shading ratio can help improve performance in
applications bound by the speed at which it can shade fragments.

We’ll visit multisampling again in ‘‘Testing and Operating on Fragments’’
on Page 156, because a fragment’s alpha value can be modified by the
results of shading at sample locations.

Testing and Operating on Fragments

When you draw geometry on the screen, OpenGL starts processing it by
executing the currently bound vertex shader; then the tessellation, and
geometry shaders, if they’re bound; and then assembles the final geometry
into primitives that get sent to the rasterizer, which figures out which
pixels in the window are affected. After OpenGL determines that an
individual fragment should be generated, its fragment shader is executed,
and then several processing stages, which control how and whether the
fragment is drawn as a pixel into the framebuffer, remain. For example, if
the fragment is outside a rectangular region or if it’s farther from the
viewpoint than the pixel that’s already in the framebuffer, its processing is
stopped, and it’s not drawn. In another stage, the fragment’s color is
blended with the color of the pixel already in the framebuffer.

This section describes both the complete set of tests that a fragment must
pass before it goes into the framebuffer and the possible final operations
that can be performed on the fragment as it’s written. Most of these tests
and operations are enabled and disabled using glEnable() and glDisable(),
respectively. The tests and operations occur in the following order---if a
fragment is eliminated in an enabled earlier test, none of the later enabled
tests or operations are executed:

1. Scissor test

2. Multisample fragment operations

3. Stencil test

4. Depth test

156 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

5. Blending

6. Dithering

7. Logical operations

All of these tests and operations are described in detail in the following
subsections.

Note: As we’ll see in ‘‘Framebuffer Objects’’ on Page 180, we can render
into multiple buffers at the same time. For many of the fragment
tests and operations, they can be controlled on a per-buffer basis,
as well as for all of the buffers collectively. In many cases, we
describe both the OpenGL function that will set the operation for
all buffers, as well as the routine for affecting a single buffer. In
most cases, the single buffer version of a function will have an ’i’
appended to the function’s name.

Scissor Test

The first additional test you can enable to control fragment visibility is the
scissor test. The scissor box is a rectangular portion of your window and
restricts all drawing to its region. You specify the scissor box using the
glScissor() command, and enable the test by specifying GL_SCISSOR_TEST
with glEnable(). If a fragment lies inside the rectangle, it passes the scissor
test.

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height);

Sets the location and size of the scissor rectangle (also known as the
scissor box). The parameters define the lower left corner (x, y) and the
width and height of the rectangle. Pixels that lie inside the rectangle pass
the scissor test. Scissoring is enabled and disabled by passing
GL_SCISSOR_TEST to glEnable() and glDisable(). By default, the
rectangle matches the size of the window and scissoring is disabled.

All rendering---including clearing the window---is restricted to the scissor
box if the test is enabled (as compared to the viewport, which doesn’t limit
screen clears). To determine whether scissoring is enabled and to obtain
the values that define the scissor rectangle, you can use GL_SCISSOR_TEST
with glIsEnabled() and GL_SCISSOR_BOX with glGetIntegerv().

Testing and Operating on Fragments 157

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Multisample Fragment Operations

By default, multisampling calculates fragment coverage values that are
independent of alpha. However, if you glEnable() one of the following
special modes, then a fragment’s alpha value is taken into consideration
when calculating the coverage, assuming that multisampling itself is
enabled and that there is a multisample buffer associated with the
framebuffer. The special modes are as follows:

• GL_SAMPLE_ALPHA_TO_COVERAGE uses the alpha value of the
fragment in an implementation-dependent manner to compute the
final coverage value.

• GL_SAMPLE_ALPHA_TO_ONE sets the fragment’s alpha value the
maximum alpha value, and then uses that value in the coverage
calculation.

• GL_SAMPLE_COVERAGE uses the value set with the
glSampleCoverage() routine, which is combined (ANDed) with the
calculated coverage value. Additionally, the generated sample mask can
be inverted by setting the invert flag with the glSampleCoverage()
routine.

void glSampleCoverage(GLfloat value, GLboolean invert);

Sets parameters to be used to interpret alpha values while computing
multisampling coverage. value is a temporary coverage value that is used
if GL_SAMPLE_COVERAGE or GL_SAMPLE_ALPHA_TO_COVERAGE has
been enabled. invert is a Boolean that indicates whether the temporary
coverage value ought to be bitwise inverted before it is used (ANDed)
with the fragment coverage.

• GL_SAMPLE_MASK specifies an exact bit-representation for the
coverage mask (as compared to it being generated by the OpenGL
implementation). This mask is once again ANDed with the sample
coverage for the fragment. The sample mask is specified using the
glSampleMaski() function.

158 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glSampleMaski(GLuint index, GLbitfield mask);

Sets one 32-bit word of the sample mask, mask. The word to set is
specified by index and the new value of that word is specified by mask. As
samples are written to the framebuffer, only those whose corresponding
bits in the current sample mask will be updated and the rest will be
discarded.

The sample mask can also be specified in a fragment shader by writing to
the gl_SampleMask variable. Details of using gl_SampleMask are covered
in ‘‘Built-in GLSL Variables and Functions’’.

Stencil Test

The stencil test takes place only if there is a stencil buffer, which you need
to request when your window is created. (If there is no stencil buffer, the
stencil test always passes.) Stenciling applies a test that compares a
reference value with the value stored at a pixel in the stencil buffer.
Depending on the result of the test, the value in the stencil buffer can be
modified. You can choose the particular comparison function used, the
reference value, and the modification performed with the glStencilFunc()
and glStencilOp() commands.

void glStencilFunc(GLenum func, GLint ref , GLuint mask);
void glStencilFuncSeparate(GLenum face, GLenum func,

GLint ref , GLuint mask);

Sets the comparison function (func), the reference value (ref ), and a mask
(mask) for use with the stencil test. The reference value is compared with
the value in the stencil buffer using the comparison function, but the
comparison applies only to those bits for which the corresponding bits of
the mask are 1. The function can be GL_NEVER, GL_ALWAYS, GL_LESS,
GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, or
GL_NOTEQUAL.

If it’s GL_LESS, for example, then the fragment passes if ref is less than the
value in the stencil buffer. If the stencil buffer contains s bitplanes, the
low-order s bits of mask are bitwise ANDed with the value in the stencil
buffer and with the reference value before the comparison is performed.

Testing and Operating on Fragments 159

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

The masked values are all interpreted as nonnegative values. The stencil
test is enabled and disabled by passing GL_STENCIL_TEST to glEnable()
and glDisable(). By default, func is GL_ALWAYS, ref is zero, mask is all
ones, and stenciling is disabled.

glStencilFuncSeparate() allows separate stencil function parameters to
be specified for front- and back-facing polygons (as set with
glCullFace()).

void glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);
void glStencilOpSeparate(GLenum face, GLenum fail,

GLenum zfail, GLenum zpass);

Specifies how the data in the stencil buffer is modified when a fragment
passes or fails the stencil test. The three functions fail, zfail, and zpass can
be GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_INCR_WRAP,
GL_DECR, GL_DECR_WRAP, or GL_INVERT. They correspond to keeping
the current value, replacing it with zero, replacing it with the reference
value, incrementing it with saturation, incrementing it without
saturation, decrementing it with saturation, decrementing it without
saturation, and bitwise-inverting it. The result of the increment and
decrement functions is clamped to lie between zero and the maximum
unsigned integer value (2s − 1 if the stencil buffer holds s bits).

The fail function is applied if the fragment fails the stencil test; if it
passes, then zfail is applied if the depth test fails and zpass is applied if
the depth test passes, or if no depth test is performed. By default, all three
stencil operations are GL_KEEP.

glStencilOpSeparate() allows separate stencil tests to be specified for
front- and back-facing polygons (as set with glCullFace()).

‘‘With saturation’’ means that the stencil value will clamp to extreme
values. If you try to decrement zero with saturation, the stencil value
remains zero. ‘‘Without saturation’’ means that going outside the indicated
range wraps around. If you try to decrement zero without saturation, the
stencil value becomes the maximum unsigned integer value (quite large!).

Stencil Queries

You can obtain the values for all six stencil-related parameters by using the
query function glGetIntegerv() and one of the values shown in Table 4.2.

160 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

You can also determine whether the stencil test is enabled by passing
GL_STENCIL_TEST to glIsEnabled().

Table 4.2 Query Values for the Stencil Test

Query Value Meaning

GL_STENCIL_FUNC stencil function

GL_STENCIL_REF stencil reference value

GL_STENCIL_VALUE_MASK stencil mask

GL_STENCIL_FAIL stencil fail action

GL_STENCIL_PASS_DEPTH_FAIL stencil pass and depth buffer fail action

GL_STENCIL_PASS_DEPTH_PASS stencil pass and depth buffer pass action

Stencil Examples

Probably the most typical use of the stencil test is to mask out an
irregularly shaped region of the screen to prevent drawing from occurring
within it. To do this, fill the stencil mask with zeros, and then draw the
desired shape in the stencil buffer with ones. You can’t draw geometry
directly into the stencil buffer, but you can achieve the same result by
drawing into the color buffer and choosing a suitable value for the zpass
function (such as GL_REPLACE). Whenever drawing occurs, a value is also
written into the stencil buffer (in this case, the reference value). To prevent
the stencil-buffer drawing from affecting the contents of the color buffer,
set the color mask to zero (or GL_FALSE). You might also want to disable
writing into the depth buffer. After you’ve defined the stencil area, set the
reference value to one, and set the comparison function such that the
fragment passes if the reference value is equal to the stencil-plane value.
During drawing, don’t modify the contents of the stencil planes.

Example 4.5 Using the Stencil Test: stencil.c

void
init(void)
{

...// Set up our vertex arrays and such

// Set the stencil’s clear value
glClearStencil(0x0);

glEnable(GL_DEPTH_TEST);
glEnable(GL_STENCIL_TEST);

}

Testing and Operating on Fragments 161

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

// Draw a sphere in a diamond-shaped section in the
// middle of a window with 2 tori.

void
display(void)
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// draw sphere where the stencil is 1
glStencilFunc(GL_EQUAL, 0x1, 0x1);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
drawSphere();

// draw the tori where the stencil is not 1
glStencilFunc(GL_NOTEQUAL, 0x1, 0x1);
drawTori();

}

// Whenever the window is reshaped, redefine the
// coordinate system and redraw the stencil area.

void
reshape(int width, int height)
{

glViewport(0, 0, width, height);

// create a diamond shaped stencil area
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 0x1, 0x1);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
drawMask();

}

Example 4.5 demonstrates how to use the stencil test in this way. Two tori
are drawn, with a diamond-shaped cutout in the center of the scene. Within
the diamond-shaped stencil mask, a sphere is drawn. In this example,
drawing into the stencil buffer takes place only when the window is
redrawn, so the color buffer is cleared after the stencil mask has been created.

The following examples illustrate other uses of the stencil test.

1. Capping---Suppose you’re drawing a closed convex object (or several of
them, as long as they don’t intersect or enclose each other) made up of
several polygons, and you have a clipping plane that may or may not
slice off a piece of it. Suppose that if the plane does intersect the
object, you want to cap the object with some constant-colored surface,
rather than see the inside of it. To do this, clear the stencil buffer to
zeros, and begin drawing with stenciling enabled and the stencil
comparison function set always to accept fragments. Invert the value
in the stencil planes each time a fragment is accepted.

162 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

After all the objects are drawn, regions of the screen where no capping
is required have zeros in the stencil planes, and regions requiring
capping are nonzero. Reset the stencil function so that it draws only
where the stencil value is nonzero, and draw a large polygon of the
capping color across the entire screen.

2. Stippling---Suppose you want to draw an image with a stipple pattern.
You can do this by writing the stipple pattern into the stencil buffer
and then drawing conditionally on the contents of the stencil buffer.
After the original stipple pattern is drawn, the stencil buffer isn’t
altered while drawing the image, so the object is stippled by the
pattern in the stencil planes.

Depth Test

For each pixel on the screen, the depth buffer keeps track of the distance
between the viewpoint and the object occupying that pixel. Then, if the
specified depth test passes, the incoming depth value replaces the value
already in the depth buffer.

The depth buffer is generally used for hidden-surface elimination. If a new
candidate color for that pixel appears, it’s drawn only if the corresponding
object is closer than the previous object. In this way, after the entire scene
has been rendered, only objects that aren’t obscured by other items
remain. Initially, the clearing value for the depth buffer is a value that’s as
far from the viewpoint as possible, so the depth of any object is nearer
than that value. If this is how you want to use the depth buffer, you simply
have to enable it by passing GL_DEPTH_TEST to glEnable() and remember
to clear the depth buffer before you redraw each frame. (See ‘‘Clearing
Buffers’’ on Page 146.) You can also choose a different comparison function
for the depth test with glDepthFunc().

void glDepthFunc(GLenum func);

Sets the comparison fun for the depth test. The value for func must be
GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL,
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. An incoming fragment
passes the depth test if its z-value has the specified relation to the value
already stored in the depth buffer. The default is GL_LESS, which means
that an incoming fragment passes the test if its z-value is less than that
already stored in the depth buffer. In this case, the z-value represents the
distance from the object to the viewpoint, and smaller values mean that
the corresponding objects are closer to the viewpoint.

Testing and Operating on Fragments 163

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

More context is provided in ‘‘OpenGL Transformations’’ in Chapter 5 for
setting a depth range.

Polygon Offset

If you want to highlight the edges of a solid object, you might draw the
object with polygon mode set to GL_FILL, and then draw it again, but in a
different color and with the polygon mode set to GL_LINE. However,
because lines and filled polygons are not rasterized in exactly the same
way, the depth values generated for the line and polygon edge are usually
not the same, even between the same two vertices. The highlighting lines
may fade in and out of the coincident polygons, which is sometimes called
‘‘stitching’’ and is visually unpleasant.

This undesirable effect can be eliminated by using polygon offset, which
adds an appropriate offset to force coincident z-values apart, separating a
polygon edge from its highlighting line. (The stencil buffer, can also be
used to eliminate stitching. However, polygon offset is almost always faster
than stenciling.) Polygon offset is also useful for applying decals to surfaces
by rendering images with hidden-line removal. In addition to lines and filled
polygons, this technique can also be used with points.

There are three different ways to turn on polygon offset, one for each type
of polygon rasterization mode: GL_FILL, GL_LINE, and GL_POINT. You
enable the polygon offset by passing the appropriate parameter to
glEnable()---either GL_POLYGON_OFFSET_FILL,
GL_POLYGON_OFFSET_LINE, or GL_POLYGON_OFFSET_POINT. You must
also call glPolygonMode() to set the current polygon rasterization method.

void glPolygonOffset(GLfloat factor, GLfloat units);

When enabled, the depth value of each fragment is modified by adding a
calculated offset value before the depth test is performed. The offset value
is calculated by

offset = m · factor + r · units
where m is the maximum depth slope of the polygon (computed during
rasterization), and r is the smallest value guaranteed to produce a
resolvable difference in depth values and is an implementation-specific
constant. Both factor and units may be negative.

164 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

To achieve a nice rendering of the highlighted solid object without visual
artifacts, you can add either a positive offset to the solid object (push it
away from you) or a negative offset to the wireframe (pull it toward you).
The big question is: How much offset is enough? Unfortunately, the offset
required depends on various factors, including the depth slope of each
polygon and the width of the lines in the wireframe.

OpenGL calculates the depth slope, as illustrated in Figure 4.2, which is
the z (depth) value divided by the change in either the x- or y-coordinates
as you traverse the polygon. The depth values are clamped to the range
[0, 1], and the x- and y-coordinates are in window coordinates. To estimate
the maximum depth slope of a polygon (m in the offset equation above),
use the formula

m =

√(
∂z
∂x

)2

+

(
∂z
∂y

)2

or an implementation may use the approximation

m = max

(
∂z
∂x

,
∂z
∂y

)

Polygon with depth slope = 0

Polygon with depth slope > 0

Figure 4.2 Polygons and their depth slopes

For polygons that are parallel to the near and far clipping planes, the depth
slope is zero. Those polygons can use a small constant offset, which you
can specify by setting factor = 0.0 and units = 1.0 in your call to
glPolygonOffset().

Testing and Operating on Fragments 165

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

For polygons that are at a great angle to the clipping planes, the depth
slope can be significantly greater than zero, and a larger offset may be
needed. A small, nonzero value for factor, such as 0.75 or 1.0, is probably
enough to generate distinct depth values and eliminate the unpleasant
visual artifacts.

In some situations, the simplest values for factor and units (1.0 and 1.0)
aren’t the answer. For instance, if the widths of the lines that are
highlighting the edges are greater than 1, then increasing the value of
factor may be necessary. Also, since depth values while using a perspective
projection are unevenly transformed into window coordinates, less offset
is needed for polygons that are closer to the near clipping plane, and more
offset is needed for polygons that are farther away. You may need to
experiment with the values you pass to glPolygonOffset() to get the result
you’re looking for.

Blending

Once an incoming fragment has passed all of the enabled fragment tests, it
can be combined with the current contents of the color buffer in one of
several ways. The simplest way, which is also the default, is to overwrite
the existing values, which admittedly isn’t much of a combination.
Alternatively, you might want to combine the color present in the
framebuffer with the incoming fragment color---a process called blending.
Most often, blending is associated with the fragment’s alpha value (or
commonly just alpha), but that’s not a strict requirement. We’ve
mentioned alpha several times but haven’t given it a proper description.
Alpha is the fourth color component, and all colors in OpenGL have an
alpha value (even if you don’t explicitly set one). However, you don’t see
alpha, but rather you see alpha’s effect: it’s a measure of translucency, and
is what’s used when you want to simulate translucent objects, like colored
glass for example.

However, unless you enable blending by calling glEnable() with
GL_BLEND, or employ advanced techniques like order-independent
transparency (discussed in ‘‘Order-Independent Transparency’’ in
Chapter 11), alpha is pretty much ignored by the OpenGL pipeline. You
see, just like the real world, where color of a translucent object is a
combination of that object’s color with the colors of all the objects you see
behind it. For OpenGL to do something useful with alpha, the pipeline
needs more information than the current primitive’s color (which is the
color output from the fragment shader); it needs to know what color is
already present for that pixel in the framebuffer.

166 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Blending Factors

In basic blending mode, the incoming fragment’s color is linearly
combined with the current pixel’s color. As with any linear combination,
coefficients control the contributions of each term. For blending in
OpenGL, those coefficients are called the source- and destination-blending
factors. The source-blending factor is associated with the color output from
the fragment shader, and similarly, the destination-blending factor is
associated with the color in the framebuffer.

If we let (Sr, Sg, Sb, Sa) represent the source-blending factors, and likewise let
(Dr,Dg,Db,Da) represent the destination factors, and use (Rs,Gs,Bs,As),
and (Rd,Gd,Bd,Ad) represent the colors of the source fragment and
destination pixel respectively, the blending equation yields a final color of

(SrRs +DrRd, SgGs +DgGd, SbBs +DbBd, SaAs +DaAd)

The default blending operation is addition, but we’ll see in ‘‘The Blending
Equation’’ on Page 170 that we can also control the blending operator.

Controlling Blending Factors

You have two different ways to choose the source and destination blending
factors. You may call glBlendFunc() and choose two blending factors: the
first factor for the source RGBA and the second for the destination RGBA.
Or, you may use glBlendFuncSeparate() and choose four blending factors,
which allows you to use one blending operation for RGB and a different
one for its corresponding alpha.

Note: We also list the functions glBlendFunci() and
glBlendFuncSeparatei(), which are used when you’re drawing to
multiple buffers simultaneously. This is an advanced topic that we
describe in ‘‘Framebuffer Objects’’ on Page 180, but since the
functions are virtually identical actions to glBlendFunc() and
glBlendFuncSeparate(), we include them here.

void glBlendFunc(GLenum srcfactor, GLenum destfactor);
void glBlendFunci(GLuint buffer, GLenum srcfactor,

GLenum destfactor);

Controls how color values in the fragment being processed (the source)
are combined with those already stored in the framebuffer (the
destination). The possible values for these arguments are explained in

Testing and Operating on Fragments 167

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Table 4.3. The argument srcfactor indicates how to compute a source
blending factor; destfactor indicates how to compute a destination
blending factor.

glBlendFunc() specifies the blending factors for all drawable buffers,
while glBlendFunci() specifies the blending factors only for buffer buffer.

The blending factors are clamped to either the range [0, 1] or [−1, 1] for
unsigned-normalized or signed-normalized framebuffer formats
respectively. If the framebuffer format is floating point, then no clamping
of factors occurs.

void glBlendFuncSeparate(GLenum srcRGB, GLenum destRGB,
GLenum srcAlpha,
GLenum destAlpha);

void glBlendFuncSeparatei(GLuint buffer, GLenum srcRGB,
GLenum destRGB, GLenum srcAlpha,
GLenum destAlpha);

Similar to glBlendFunc(), glBlendFuncSeparate() also controls how
source color values (fragment) are combined with destination values (in
the framebuffer). glBlendFuncSeparate() also accepts the same
arguments (shown in Table 4.3) as glBlendFunc(). The argument srcRGB
indicates the source-blending factor for color values; destRGB is the
destination-blending factor for color values. The argument srcAlpha
indicates the source-blending factor for alpha values; destAlpha is the
destination-blending factor for alpha values.

glBlendFuncSeparatei() specifies the blending factors for all drawable
buffers, while glBlendFuncSeparatei() specifies the blending factors only
for buffer buffer.

Note: In Table 4.3, the values with the subscript s1 are for dual-source
blending factors, which are described in ‘‘Dual-Source Blending’’
on Page 198.

If you use one of the GL_CONSTANT blending functions, you need to use
glBlendColor() to specify the constant color.

168 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Table 4.3 Source and Destination Blending Factors

Constant RGB Blend Factor Alpha Blend
Factor

GL_ZERO (0, 0, 0) 0

GL_ONE (1, 1, 1) 1

GL_SRC_COLOR (Rs,Gs,Bs) As

GL_ONE_MINUS_SRC_COLOR (1, 1, 1)− (Rs,Gs,Bs) 1− As

GL_DST_COLOR (Rd,Gd,Bd) Ad

GL_ONE_MINUS_DST_COLOR (1, 1, 1)− (Rd,Gd,Bd) 1− Ad

GL_SRC_ALPHA (As,As,As) As

GL_ONE_MINUS_SRC_ALPHA (1, 1, 1)− (As,As,As) 1− As

GL_DST_ALPHA (Ad,Ad,Ad) Ad

GL_ONE_MINUS_DST_ALPHA (1, 1, 1)− (Ad,Ad,Ad) 1− Ad

GL_CONSTANT_COLOR (Rc,Gc,Bc) Ac

GL_ONE_MINUS_CONSTANT_COLOR (1, 1, 1)− (Rc,Gc,Bc) 1− Ac

GL_CONSTANT_ALPHA (Ac,Ac,Ac) Ac

GL_ONE_MINUS_CONSTANT_ALPHA (1, 1, 1)− (Ac,Ac,Ac) 1− Ac

GL_SRC_ALPHA_SATURATE (f , f , f ),f =min(As, 1−Ad) 1

GL_SRC1_COLOR (Rs1,Gs1,Bs1) As1

GL_ONE_MINUS_SRC1_COLOR (1, 1, 1)− (Rs1,Gs1,Bs1) 1− As1

GL_SRC1_ALPHA (As1,As1,As1) As1

GL_ONE_MINUS_SRC1_ALPHA (1, 1, 1)− (As1,As1,As1) 1− As1

void glBlendColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

Sets the current red, blue, green, and alpha values for use as the constant
color (Rc,Gc,Bc,Ac) in blending operations.

Similarly, use glDisable() with GL_BLEND to disable blending. Note that
using the constants GL_ONE (as the source factor) and GL_ZERO (for the
destination factor) gives the same results as when blending is disabled;
these values are the default.

Testing and Operating on Fragments 169

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Advanced

OpenGL has the ability to render into multiple buffers simultaneously (see
‘‘Writing to Multiple Renderbuffers Simultaneously’’ on Page 193 for
details). All buffers can have blending enabled and disabled
simultaneously (using glEnable() and glDisable()). Blending settings can
be managed on a per-buffer basis using glEnablei() and glDisablei().

The Blending Equation

With standard blending, colors in the framebuffer are combined (using
addition) with incoming fragment colors to produce the new framebuffer
color. Either glBlendEquation() or glBlendEquationSeparate() may be
used to select other mathematical operations to compute the difference,
minimum, or maximum between color fragments and framebuffer pixels.

void glBlendEquation(GLenum mode);
void glBlendEquationi(GLuint buffer, GLenum mode);

Specifies how framebuffer and source colors are blended together. The
allowable values for mode are GL_FUNC_ADD (the default),
GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, and
GL_MAX. The possible modes are described in Table 4.4.

glBlendEquation() specifies the blending mode for all buffers, while
glBlendEquationi() sets the mode for the buffer specified by the buffer
argument, which is the integer index of the buffer.

void glBlendEquationSeparate(GLenum modeRGB,
GLenum modeAlpha);

void glBlendEquationSeparatei(GLuint buffer,
GLenum modeRGB,
GLenum modeAlpha);

Specifies how framebuffer and source colors are blended together, but
allows for different blending modes for the rgb and alpha color
components. The allowable values for modeRGB and modeAlpha are
identical for the modes accepted by glBlendEquation().

Again, glBlendEquationSeparate() sets the blending modes for all
buffers, while glBlendEquationSeparatei() sets the modes for the buffer
whose index is specified in buffer.

170 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

In Table 4.4, Cs and Cd represent the source and destination colors. The S
and D parameters in the table represent the source- and
destination-blending factors as specified with glBlendFunc() or
glBlendFuncSeparate().

Table 4.4 Blending Equation Mathematical Operations

Blending Mode Parameter Mathematical Operation

GL_FUNC_ADD CsS+ CdD

GL_FUNC_SUBTRACT CsS− CdD

GL_FUNC_REVERSE_SUBTRACT CdD− CsS

GL_MIN min(CsS,CdD)

GL_MAX max(CsS,CdD)

Dithering

On systems with a small number of color bitplanes, you can improve the
color resolution at the expense of spatial resolution by dithering the color
in the image. Dithering is like half-toning in newspapers. Although The
New York Times has only two colors---black and white---it can show
photographs by representing the shades of gray with combinations of
black and white dots. Comparing a newspaper image of a photo (having
no shades of gray) with the original photo (with grayscale) makes the loss
of spatial resolution obvious. Similarly, systems with a small number of
color bitplanes may dither values of red, green, and blue on neighboring
pixels for the appearance of a wider range of colors.

The dithering operation that takes place is hardware-dependent; all
OpenGL allows you to do is to turn it on and off. In fact, on some
machines, enabling dithering might do nothing at all, which makes sense
if the machine already has high color resolution. To enable and disable
dithering, pass GL_DITHER to glEnable() and glDisable(). Dithering is
enabled by default.

Logical Operations

The final operation on a fragment is the logical operation, such as an OR,
XOR, or INVERT, which is applied to the incoming fragment values
(source) and/or those currently in the color buffer (destination). Such
fragment operations are especially useful on bit-blt-type machines, on
which the primary graphics operation is copying a rectangle of data from

Testing and Operating on Fragments 171

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

one place in the window to another, from the window to processor
memory, or from memory to the window. Typically, the copy doesn’t write
the data directly into memory but instead allows you to perform an
arbitrary logical operation on the incoming data and the data already
present; then it replaces the existing data with the results of the operation.

Since this process can be implemented fairly cheaply in hardware, many
such machines are available. As an examplese of using a logical operation,
XOR can be used to draw on an image in a revertible way; simply XOR the
same drawing again, and the original image is restored.

You enable and disable logical operations by passing
GL_COLOR_LOGIC_OP to glEnable() and glDisable(). You also must
choose among the 16 logical operations with glLogicOp(), or you’ll just
get the effect of the default value, GL_COPY.

void glLogicOp(GLenum opcode);

Selects the logical operation to be performed, given an incoming (source)
fragment and the pixel currently stored in the color buffer (destination).
Table 4.5 shows the possible values for opcode and their meaning (s
represents source and d destination). The default value is GL_COPY.

Table 4.5 Sixteen Logical Operations

Parameter Operation Parameter Operation

GL_CLEAR 0 GL_AND s ∧ d

GL_COPY s GL_OR s ∨ d

GL_NOOP d GL_NAND ¬(s ∧ d)

GL_SET 1 GL_NOR ¬(s ∨ d)

GL_COPY_INVERTED ¬s GL_XOR s XOR d

GL_INVERT ¬d GL_EQUIV ¬(s XOR d)

GL_AND_REVERSE s ∧ ¬d GL_AND_INVERTED ¬s ∧ d

GL_OR_REVERSE s ∨ ¬d GL_OR_INVERTED ¬s ∨ d

172 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

For floating-point buffers, or those in sRGB format, logical operations are
ignored.

Occlusion Query

Advanced

The depth buffer determines visibility on a per-pixel basis. For
performance reasons, it would be nice to be able to determine if a geometric
object is visible before sending all of its (perhaps complex) geometry for
rendering. Occlusion querys enable you to determine if a representative set
of geometry will be visible after depth testing.

This is particularly useful for complex geometric objects with many
polygons. Instead of rendering all of the geometry for a complex object,
you might render its bounding box or another simplified representation
that require less rendering resources. If OpenGL returns that no fragments
or samples would have been modified by rendering that piece of geometry,
you know that none of your complex object will be visible for that frame,
and you can skip rendering that object for the frame.

The following steps are required to utilize occlusion queries:

1. Generate a query id for each occlusion query that you need.

2. Specify the start of an occlusion query by calling glBeginQuery().

3. Render the geometry for the occlusion test.

4. Specify that you’ve completed the occlusion query by calling
glEndQuery().

5. Retrieve the number of, or if any, samples passed the depth tests.

In order to make the occlusion query process as efficient as possible, you’ll
want to disable all rendering modes that will increase the rendering time
but won’t change the visibility of a pixel.

Generating Query Objects

In order to use queries, you’ll first need to request identifiers for your query
tests. glGenQueries() will generate the requested number of unused query
ids for your subsequent use.

Testing and Operating on Fragments 173

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glGenQueries(GLsizei n, GLuint *ids);

Returns n currently unused names for occlusion query objects in the
array ids The names returned in ids do not have to be a contiguous set of
integers.

The names returned are marked as used for the purposes of allocating
additional query objects, but only acquire valid state once they have
been specified in a call to glBeginQuery().

Zero is a reserved occlusion query object name and is never returned as a
valid value by glGenQueries().

You can also determine if an identifier is currently being used as an
occlusion query by calling glIsQuery().

GLboolean glIsQuery(GLuint id);

Returns GL_TRUE if id is the name of an occlusion query object. Returns
GL_FALSE if id is zero or if id is a nonzero value that is not the name of a
buffer object.

Initiating an Occlusion Query Test

To specify geometry that’s to be used in an occlusion query, merely bracket
the rendering operations between calls to glBeginQuery() and
glEndQuery(), as demonstrated in Example 4.6

Example 4.6 Rendering Geometry with Occlusion Query: occquery.c

glBeginQuery(GL_SAMPLES_PASSED, Query);
glDrawArrays(GL_TRIANGLES, 0, 3);
glEndQuery(GL_SAMPLES_PASSED);

All OpenGL operations are available while an occlusion query is active,
with the exception of glGenQueries() and glDeleteQueries(), which will
raise a GL_INVALID_OPERATION error.

void glBeginQuery(GLenum target, GLuint id);

Specifies the start of an occlusion query operation. target must be
GL_SAMPLES_PASSED, GL_ANY_SAMPLES_PASSED, or
GL_ANY_SAMPLES_PASSED_CONSERVATIVE. id is an unsigned integer
identifier for this occlusion query operation.

174 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glEndQuery(GLenum target);

Ends an occlusion query. target must be GL_SAMPLES_PASSED, or
GL_ANY_SAMPLES_PASSED.

Determining the Results of an Occlusion Query

Once you’ve completed rendering the geometry for the occlusion query,
you need to retrieve the results. This is done with a call to
glGetQueryObjectiv() or glGetQueryObjectuiv(), as shown in
Example 4.7, which will return the number of fragments, or samples, if
you’re using multisampling.

void glGetQueryObjectiv(GLenum id, GLenum pname,
GLint *params);

void glGetQueryObjectuiv(GLenum id, GLenum pname,
GLuint *params);

Queries the state of an occlusion query object. id is the name of a query
object. If pname is GL_QUERY_RESULT, then params will contain the
number of fragments or samples (if multisampling is enabled) that passed
the depth test, with a value of zero representing the object being entirely
occluded.

There may be a delay in completing the occlusion query operation. If
pname is GL_QUERY_RESULT_AVAILABLE, params will contain GL_TRUE
if the results for query id are available, or GL_FALSE otherwise.

Example 4.7 Retrieving the Results of an Occlusion Query

count = 1000; /* counter to avoid a possible infinite loop */

while (!queryReady && count-) {
glGetQueryObjectiv(Query, GL_QUERY_RESULT_AVAILABLE, &queryReady);

}

if (queryReady) {
glGetQueryObjectiv(Query, GL_QUERY_RESULT, &samples);
cerr << "Samples rendered: " << samples << endl;

}
else {

cerr << " Result not ready ... rendering anyways" << endl;
samples = 1; /* make sure we render */

}

Testing and Operating on Fragments 175

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

if (samples > 0) {
glDrawArrays(GL_TRIANGLE_FAN}, 0, NumVertices);

}

Cleaning Up Occlusion Query Objects

After you’ve completed your occlusion query tests, you can release the
resources related to those queries by calling glDeleteQueries().

void glDeleteQueries(GLsizei n, const GLuint *ids);

Deletes n occlusion query objects, named by elements in the array ids.
The freed query objects may now be reused (for example, by
glGenQueries()).

Conditional Rendering

Advanced

One of the issues with occlusion queries is that they require OpenGL to
pause processing geometry and fragments, count the number of affected
samples in the depth buffer, and return the value to your application.
Stopping modern graphics hardware in this manner usually
catastrophically affects performance in performance-sensitive applications.
To eliminate the need to pause OpenGL’s operation, conditional rendering
allows the graphics server (hardware) to decide if an occlusion query
yielded any fragments, and to render the intervening commands.
Conditional rendering is enabled by surrounding the rendering operations
you would have conditionally executed using the results of glGetQuery*().

void glBeginConditionalRender(GLuint id, GLenum mode);
void glEndConditionalRender(void);

Delineates a sequence of OpenGL rendering commands that may be
discarded based on the results of the occlusion query object id. mode
specifies how the OpenGL implementation uses the results of the
occlusion query, and must be one of: GL_QUERY_WAIT,
GL_QUERY_NO_WAIT, GL_QUERY_BY_REGION_WAIT, or
GL_QUERY_BY_REGION_NO_WAIT.

A GL_INVALID_VALUE is set if id is not an existing occlusion query. A
GL_INVALID_OPERATION is generated if glBeginConditionalRender()
is called while a conditional-rendering sequence is in operation;

176 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

if glEndConditionalRender() is called when no conditional render is
underway; if id is the name of an occlusion query object with a target
different than GL_SAMPLES_PASSED; or if id is the name of an occlusion
query in progress.

The code shown in Example 4.8 completely replaces the sequence of code
in Example 4.7. Not only is it the code more compact, it is far more
efficient as it completely removes the results query to the OpenGL server,
which is a major performance inhibitor.

Example 4.8 Rendering Using Conditional Rendering

glBeginConditionalRender(Query, GL_QUERY_WAIT);
glDrawArrays(GL_TRIANGLE_FAN, 0, NumVertices);
glEndConditionalRender();

You may have noticed that there is a mode parameter to
glBeginConditionalRender(), which may be one of GL_QUERY_WAIT,
GL_QUERY_NO_WAIT, GL_QUERY_BY_REGION_WAIT, or
GL_QUERY_BY_REGION_NO_WAIT. These modes control whether the
GPU will wait for the results of a query to be ready before continuing to
render, and whether it will consider global results or results only
pertaining to the region of the screen that contributed to the original
occlusion query result.

• If mode is GL_QUERY_WAIT then the GPU will wait for the result of the
occlusion query to be ready before determining whether it will
continue with rendering.

• If mode is GL_QUERY_NO_WAIT then the GPU may not wait for the
result of the occlusion query to be ready before continuing to render. If
the result is not ready, then it may choose to render the part of the
scene contained in the conditional rendering section anyway.

• If mode is GL_QUERY_BY_REGION_WAIT then the GPU will wait for
anything that contributes to the region covered by the controled
rendering to be completed. It may still wait for the complete occlusion
query result to be ready.

• If mode is GL_QUERY_BY_REGION_NO_WAIT, then the GPU will
discard any rendering in regions of the framebuffer that contributed no
samples to the occlusion query, but may choose to render into other
regions if the result was not available in time.

By using these modes wisely, you can improve performance of the system.
For example, waiting for the results of an occlusion query may actually

Testing and Operating on Fragments 177

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

take more time than just rendering the conditional part of the scene. In
particular, if it is expected that most results will mean that some rendering
should take place, then on aggregate, it may be faster to always use one of
the NO_WAIT modes even if it means more rendering will take place
overall.

Per-Primitive Antialiasing

You might have noticed in some of your OpenGL images that lines,
especially nearly horizontal and nearly vertical ones, appear jagged. These
jaggies appear because the ideal line is approximated by a series of pixels
that must lie on the pixel grid. The jaggedness is called aliasing, and this
section describes one antialiasing technique for reducing it. Figure 4.3
shows two intersecting lines, both aliased and antialiased. The pictures
have been magnified to show the effect.

Figure 4.3 Aliased and antialiased lines

Figure 4.3 shows how a diagonal line 1 pixel wide covers more of some
pixel squares than others. In fact, when performing antialiasing, OpenGL
calculates a coverage value for each fragment based on the fraction of the
pixel square on the screen that it would cover. OpenGL multiplies the
fragment’s alpha value by its coverage. You can then use the resulting
alpha value to blend the fragment with the corresponding pixel already in
the framebuffer.

The details of calculating coverage values are complex, and difficult to
specify in general. In fact, computations may vary slightly depending on
your particular implementation of OpenGL. You can use the glHint()
command to exercise some control over the trade-off between image
quality and speed, but not all implementations will take the hint.

178 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glHint(GLenum target, GLenum hint);

Controls certain aspects of OpenGL behavior. The target parameter
indicates which behavior is to be controlled; its possible values are shown
in Table 4.6. The hint parameter can be GL_FASTEST to indicate that the
most efficient option should be chosen, GL_NICEST to indicate the
highest-quality option, or GL_DONT_CARE to indicate no preference.
The interpretation of hints is implementation-dependent; an OpenGL
implementation can ignore them entirely.

Table 4.6 Values for Use with glHint()

Parameter Specifies

GL_LINE_SMOOTH_HINT Line antialiasing quality

GL_POLYGON_SMOOTH_HINT Polygon edge antialiasing quality

GL_TEXTURE_COMPRESSION_HINT Quality and performance of
texture-image compression (See
Chapter 6, ‘‘Textures’’ for more
detail)

GL_FRAGMENT_SHADER_DERIVATIVE_HINT Derivative accuracy for fragment
processing built-in functions
dFdx, dFdy, and fwidth (See
Appendix C for more details)

We’ve discussed multisampling before as a technique for antialiasing;
however, it’s not usually the best solution for lines. Another way to
antialias lines, and polygons if the multisample results are quite what you
want, is to turn on antialiasing with glEnable(), and passing in
GL_LINE_SMOOTH or GL_POLYGON_SMOOTH, as appropriate. You
might also want to provide a quality hint with glHint(). We’ll describe the
steps for each type of primitive that can be antialiased in the next sections.

Antialiasing Lines

First, you need to enable blending. The blending factors you most likely
want to use are GL_SRC_ALPHA (source) and
GL_ONE_MINUS_SRC_ALPHA (destination). Alternatively, you can use
GL_ONE for the destination factor to make lines a little brighter where
they intersect. Now you’re ready to draw whatever points or lines you want
antialiased. The antialiased effect is most noticeable if you use a fairly high
alpha value. Remember that since you’re performing blending, you might
need to consider the rendering order. However, in most cases, the ordering
can be ignored without significant adverse effects.

Per-Primitive Antialiasing 179

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Example 4.9 shows the initialization for line antialiasing.

Example 4.9 Setting Up Blending for Antialiasing Lines: antilines.cpp

glEnable (GL_LINE_SMOOTH);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glHint (GL_LINE_SMOOTH_HINT, GL_DONT_CARE);

Antialiasing Polygons

Antialiasing the edges of filled polygons is similar to antialiasing lines.
When different polygons have overlapping edges, you need to blend the
color values appropriately.

To antialias polygons, you use the alpha value to represent coverage values
of polygon edges. You need to enable polygon antialiasing by passing
GL_POLYGON_SMOOTH to glEnable(). This causes pixels on the edges of
the polygon to be assigned fractional alpha values based on their coverage,
as though they were lines being antialiased. Also, if you desire, you can
supply a value for GL_POLYGON_SMOOTH_HINT.

In order to have edges blend appropriately, set the blending factors to
GL_SRC_ALPHA_SATURATE (source) and GL_ONE (destination). With this
specialized blending function, the final color is the sum of the destination
color and the scaled source color; the scale factor is the smaller of either
the incoming source alpha value or one minus the destination alpha value.
This means that for a pixel with a large alpha value, successive incoming
pixels have little effect on the final color because one minus the
destination alpha is almost zero. With this method, a pixel on the edge of
a polygon might be blended eventually with the colors from another
polygon that’s drawn later. Finally, you need to sort all the polygons in
your scene so that they’re ordered from front to back before drawing them.

Note: Antialiasing can be adversely affected when using the depth buffer,
in that pixels may be discarded when they should have been
blended. To ensure proper blending and antialiasing, you’ll need to
disable the depth buffer.

Framebuffer Objects

Advanced

Up to this point, all of our discussion regarding buffers has focused on the
buffers provided by the windowing system, as you requested when you

180 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

called glutCreateWindow() (and configured by your call to
glutInitDisplayMode()). Although you can quite successfully use any
technique with just those buffers, quite often various operations require
moving data between buffers superfluously. This is where framebuffer
objects enter the picture. Using framebuffer objects, you can create our
own framebuffers and use their attached renderbuffers to minimize data
copies and optimize performance.

Framebuffer objects are quite useful for performing off-screen-rendering,
updating texture maps, and engaging in buffer ping-ponging (a data-transfer
techniques used in GPGPU).

The framebuffer that is provided by the windowing system is the only
framebuffer that is available to the display system of your graphics
server---that is, it is the only one you can see on your screen. It also places
restrictions on the use of the buffers that were created when your window
opened. By comparison, the framebuffers that your application creates
cannot be displayed on your monitor; they support only off-screen rendering.

Another difference between window-system-provided framebuffers and
framebuffers you create is that those managed by the window system
allocate their buffers---color, depth, and stencil---when your window is
created. When you create an application-managed framebuffer object, you
need to create additional renderbuffers that you associate with the
framebuffer objects you created. The buffers with the window-system-
provided buffers can never be associated with an application-created
framebuffer object, and vice versa.

To allocate an application-generated framebuffer object name, you need to
call glGenFramebuffers(), which will allocate an unused identifier for the
framebuffer object.

void glGenFramebuffers(GLsizei n, GLuint *ids);

Allocate n unused framebuffer object names, and return those names in
ids.

A GL_INVALID_VALUE error will be generated if n is negative.

Allocating a framebuffer object name doesn’t actually create the
framebuffer object or allocate any storage for it. Those tasks are handled
through a call to glBindFramebuffer(). glBindFramebuffer() operates in a
similar manner to many of the other glBind*() routines you’ve seen in
OpenGL. The first time it is called for a particular framebuffer, it causes

Framebuffer Objects 181

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

storage for the object to be allocated and initialized. Any subsequent calls
will bind the provided framebuffer object name as the active one.

void glBindFramebuffer(GLenum target, GLuint framebuffer);

Specifies a framebuffer for either reading or writing. When target is
GL_DRAW_FRAMEBUFFER, framebuffer specifies the destination
framebuffer for rendering. Similarly, when target is set to
GL_READ_FRAMEBUFFER, framebuffer specifies the source of read
operations. Passing GL_FRAMEBUFFER for target sets both the read and
write framebuffer bindings to framebuffer.

framebuffer must either be zero, which binds target to the default
window-system-provided framebuffer, or a framebuffer object generated
by a call to glGenFramebuffers().

A GL_INVALID_OPERATION error is generated if framebuffer is neither
zero nor a valid framebuffer object previously generated by calling
glGenFramebuffers() but not deleted by calling glDeleteFramebuffers().

As with all of the other objects you have encountered in OpenGL, you can
release an application-allocated framebuffer by calling
glDeleteFramebuffers(). That function will mark the framebuffer object’s
name as unallocated and release any resources associated with the
framebuffer object.

void glDeleteFramebuffers(GLsizei n, const GLuint *ids);

Deallocates the n framebuffer objects associated with the names provided
in ids. If a framebuffer object is currently bound (i.e., its name was passed
to the most recent call to glBindFramebuffer()) and is deleted, the
framebuffer target is immediately bound to id zero (the window-system
provided framebuffer), and the framebuffer object is released.

A GL_INVALID_VALUE error is generated by glDeleteFramebuffers() if n
is negative. Passing unused names or zero does not generate any errors;
they are simply ignored.

For completeness, you can determine whether a particular unsigned integer
is an application-allocated framebuffer object by calling glIsFramebuffer():

182 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

GLboolean glIsFramebuffer(GLuint framebuffer);

Returns GL_TRUE if framebuffer is the name of a framebuffer returned
from glGenFramebuffers(). Returns GL_FALSE if framebuffer is zero (the
window-system default framebuffer) or a value that’s either unallocated
or been deleted by a call to glDeleteFramebuffers().

void glFramebufferParameteri(GLenum target, GLenum pname,
GLint param);

Sets parameters of a framebuffer object, when the framebuffer object has
no attachments, otherwise the values for these parameters are specified
by the framebuffer attachments.

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.
pname specifies the parameter of the framebuffer object bound to target
to set, and must be one of GL_FRAMEBUFFER_DEFAULT_WIDTH,
GL_FRAMEBUFFER_DEFAULT_HEIGHT,
GL_FRAMEBUFFER_DEFAULT_LAYERS,
GL_FRAMEBUFFER_DEFAULT_SAMPLES, or
GL_FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS.

Once a framebuffer object is created, you still can’t do much with it,
generally speaking. You need to provide a place for drawing to go and
reading to come from; those places are called framebuffer attachments. We’ll
discuss those in more detail after we examine renderbuffers, which are one
type of buffer you can attach to a framebuffer object.

Renderbuffers

Renderbuffers are effectively memory managed by OpenGL that contains
formatted image data. The data that a renderbuffer holds takes meaning
once it is attached to a framebuffer object, assuming that the format of the
image buffer matches what OpenGL is expecting to render into (e.g., you
can’t render colors into the depth buffer).

As with many other buffers in OpenGL, the process of allocating and
deleting buffers is similar to what you’ve seen before. To create a new
renderbuffer, you would call glGenRenderbuffers().

Framebuffer Objects 183

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glGenRenderbuffers(GLsizei n, GLuint *ids);

Allocate n unused renderbuffer object names, and return those names in
ids. Names are unused until bound with a call to glBindRenderbuffer().

Likewise, a call to glDeleteRenderbuffers() will release the storage
associated with a renderbuffer.

void glDeleteRenderbuffers(GLsizei n, const GLuint *ids);

Deallocates the n renderbuffer objects associated with the names
provided in ids. If one of the renderbuffers is currently bound and passed
to glDeleteRenderbuffers(), a binding of zero replaces the binding at the
current framebuffer attachment point, in addition to the renderbuffer
being released.

No errors are generated by glDeleteRenderbuffers(). Unused names or
zero are simply ignored.

Likewise, you can determine whether a name represents a valid
renderbuffer by calling glIsRenderbuffer().

void glIsRenderbuffer(GLuint renderbuffer);

Returns GL_TRUE if renderbuffer is the name of a renderbuffer returned
from glGenRenderbuffers(). Returns GL_FALSE if framebuffer is zero (the
window-system default framebuffer) or a value that’s either unallocated
or deleted by a call to glDeleteRenderbuffers().

Similar to the process of binding a framebuffer object so that you can
modify its state, you call glBindRenderbuffer() to affect a renderbuffer’s
creation and to modify the state associated with it, which includes the
format of the image data that it contains.

void glBindRenderbuffer(GLenum target, GLuint renderbuffer);

Creates a renderbuffer and associates it with the name renderbuffer. target
must be GL_RENDERBUFFER. renderbuffer must either be zero, which
removes any renderbuffer binding, or a name that was generated by a call
to glGenRenderbuffers(); otherwise, a GL_INVALID_OPERATION error
will be generated.

184 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Creating Renderbuffer Storage

When you first call glBindRenderbuffer() with an unused renderbuffer
name, the OpenGL server creates a renderbuffer with all its state
information set to the default values. In this configuration, no storage has
been allocated to store image data. Before you can attach a renderbuffer to
a framebuffer and render into it, you need to allocate storage and specify
its image format. This is done by calling either glRenderbufferStorage() or
glRenderbufferStorageMultisample().

void glRenderbufferStorage(GLenum target,
GLenum internalformat,
GLsizei width, GLsizei height);

void glRenderbufferStorageMultisample(GLenum target,
GLsizei samples,
GLenum internalformat,
GLsizei width,
GLsizei height);

Allocates storage for image data for the bound renderbuffer. target must
be GL_RENDERBUFFER. For a color-renderable buffer, internalformat must
be one of:

GL_RED GL_R8 GL_R16
GL_RG GL_RG8 GL_RG16
GL_RGB GL_R3_G3_B2 GL_RGB4
GL_RGB5 GL_RGB8 GL_RGB10
GL_RGB12 GL_RGB16 GL_RGBA
GL_RGBA2 GL_RGBA4 GL_RGB5_A1
GL_RGBA8 GL_RGB10_A2 GL_RGBA12
GL_RGBA16 GL_SRGB GL_SRGB8
GL_SRGB_ALPHA GL_SRGB8_ALPHA8 GL_R16F

Framebuffer Objects 185

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

GL_R32F GL_RG16F GL_RG32F
GL_RGB16F GL_RGB32F GL_RGBA16F
GL_RGBA32F GL_R11F_G11F_B10F GL_RGB9_E5
GL_R8I GL_R8UI GL_R16I
GL_R16UI GL_R32I GL_R32UI
GL_RG8I GL_RG8UI GL_RG16I
GL_RG16UI GL_RG32I GL_RG32UI
GL_RGB8I GL_RGB8UI GL_RGB16I
GL_RGB16UI GL_RGB32I GL_RGB32UI
GL_RGBA8I GL_RGBA8UI GL_RGBA16I
GL_RGBA16UI GL_RGBA32I GL_R8_SNORM
GL_R16_SNORM GL_RG8_SNORM GL_RG16_SNORM
GL_RGB8_SNORM GL_RGB16_SNORM GL_RGBA8_SNORM
GL_RGBA16_SNORM

To use a renderbuffer as a depth buffer, it must be depth-renderable,
which is specified by setting internalformat to either
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT32, GL_DEPTH_COMPONENT32, or
GL_DEPTH_COMPONENT32F.

For use exclusively as a stencil buffer, internalformat should be specified
as either GL_STENCIL_INDEX, GL_STENCIL_INDEX1,
GL_STENCIL_INDEX4, GL_STENCIL_INDEX8, or
GL_STENCIL_INDEX16.

For packed depth-stencil storage, internalformat must be
GL_DEPTH_STENCIL, which allows the renderbuffer to be attached as
the depth buffer, stencil buffer, or at the combined depth-stencil
attachment point.

width and height specify the size of the renderbuffer in pixels, and
samples specifies the number of multisample samples per pixel. Setting
samples to zero in a call to glRenderbufferStorageMultisample() is
identical to calling glRenderbufferStorage().

A GL_INVALID_VALUE is generated if width or height is greater than the
value returned when querying GL_MAX_RENDERBUFFER_SIZE, or if
samples is greater than the value returned when querying
GL_MAX_SAMPLES. A GL_INVALID_OPERATION is generated if
internalformat is a signed- or unsigned-integer format (e.g., a format
containing a ‘‘I’’, or ‘‘UI’’ in its token), and samples is not zero, and the
implementation doesn’t support multisampled integer buffers. Finally, if
the renderbuffer size and format combined exceed the available memory
able to be allocated, then a GL_OUT_OF_MEMORY error is generated.

186 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Example 4.10 Creating a 256× 256 RGBA Color Renderbuffer

glGenRenderbuffers(1, &color);
glBindRenderbuffer(GL_RENDERBUFFER, color);
glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA, 256, 256);

Once you have created storage for your renderbuffer as shown in
Example 4.10, you need to attach it to a framebuffer object before you can
render into it.

Framebuffer Attachments

When you render, you can send the results of that rendering to a number
of places:

• The color buffer to create an image, or even multiple color buffers if
you’re using multiple render targets (see ‘‘Writing to Multiple
Renderbuffers Simultaneously’’ on Page 193).

• The depth buffer to store occlusion information.

• The stencil buffer for storing per-pixel masks to control rendering. Each
of those buffers represents a framebuffer attachment, to which you can
attach suitable image buffers that you later render into, or read from.
The possible framebuffer attachment points are listed in Table 4.7.

Table 4.7 Framebuffer Attachments

Attachment Name Description

GL_COLOR_ATTACHMENTi The ith color buffer. i can range from
zero (the default color buffer) to
GL_MAX_COLOR_ATTACHMENTS - 1

GL_DEPTH_ATTACHMENT The depth buffer

GL_STENCIL_ATTACHMENT The stencil buffer

GL_DEPTH_STENCIL_ATTACHMENT A special attachment for packed
depth-stencil buffers (which require the
renderbuffer to have been allocated as a
GL_DEPTH_STENCIL pixel format)

Currently, there are two types of rendering surfaces you can associate with
one of those attachments: renderbuffers and a level of a texture image.

We’ll first discuss attaching a renderbuffer to a framebuffer object, which is
done by calling glFramebufferRenderbuffer().

Framebuffer Objects 187

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glFramebufferRenderbuffer(GLenum target,
GLenum attachment,
GLenum renderbuffertarget,
GLuint renderbuffer);

Attaches renderbuffer to attachment of the currently bound framebuffer
object. target must either be GL_READ_FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER (which is equivalent to
GL_DRAW_FRAMEBUFFER).

attachment is one of GL_COLOR_ATTACHMENTi,
GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT, or
GL_DEPTH_STENCIL_ATTACHMENT.

renderbuffertarget must be GL_RENDERBUFFER, and renderbuffer must
either be zero, which removes any renderbuffer attachment at
attachment, or a renderbuffer name returned from glGenRenderbuffers(),
or a GL_INVALID_OPERATION error is generated.

In Example 4.11, we create and attach two renderbuffers: one for color,
and the other for depth. We then proceed to render, and finally copy the
results back to the window-system-provided framebuffer to display the
results. You might use this technique to generate frames for a movie
rendering off-screen, where you don’t have to worry about the visible
framebuffer being corrupted by overlapping windows or someone resizing
the window and interrupting rendering.

One important point to remember is that you might need to reset the
viewport for each framebuffer before rendering, particularly if the size of
your application-defined framebuffers differs from the window-system
provided framebuffer.

Example 4.11 Attaching a Renderbuffer for Rendering

enum { Color, Depth, NumRenderbuffers };

GLuint framebuffer, renderbuffer[NumRenderbuffers]

void
init()
{

glGenRenderbuffers(NumRenderbuffers, renderbuffer);
glBindRenderbuffer(GL_RENDERBUFFER, renderbuffer[Color]);
glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA, 256, 256);

glBindRenderbuffer(GL_RENDERBUFFER, renderbuffer[Depth]);

188 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 256, 256);

glGenFramebuffers(1, &framebuffer);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_RENDERBUFFER, renderbuffer[Color]);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, renderbuffer[Depth]);

glEnable(GL_DEPTH_TEST);
}

void
display()
{

// Prepare to render into the renderbuffer

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer);

glViewport(0, 0, 256, 256);

// Render into renderbuffer

glClearColor(1.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

...

// Set up to read from the renderbuffer and draw to
// window-system framebuffer

glBindFramebuffer(GL_READ_FRAMEBUFFER, framebuffer);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);

glViewport(0, 0, windowWidth, windowHeight);
glClearColor(0.0, 0.0, 1.0, 1.0);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* Do the copy */

glBlitFramebuffer(0, 0, 255, 255, 0, 0, 255, 255,
GL_COLOR_BUFFER_BIT, GL_NEAREST);

glutSwapBuffers();
}

Framebuffer Objects 189

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Framebuffer Completeness

Given the myriad of combinations between texture and buffer formats,
and between framebuffer attachments, various situations can arise that
prevent the completion of rendering when you are using
application-defined framebuffer objects. After modifying the attachments
to a framebuffer object, it’s best to check the framebuffer’s status by calling
glCheckFramebufferStatus().

GLenum glCheckFramebufferStatus(GLenum target);

Returns one of the framebuffer completeness status enums listed in
Table 4.8. target must be one of GL_READ_FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER (which is equivalent to
GL_DRAW_FRAMEBUFFER).

If glCheckFramebufferStatus() generates an error, zero is returned.

The errors representing the various violations of framebuffer
configurations are listed in Table 4.8.

Of the listed errors, GL_FRAMEBUFFER_UNSUPPORTED is very
implementation dependent, and may be the most complicated to debug.

Advanced

glClear(GL_COLOR_BUFFER_BIT) will clear all of the bound color buffers
(we have see in ‘‘Framebuffer Objects’’ on Page 180 how to configure
multiple color buffers). You can use the glClearBuffer*() commands to
clear individual buffers.

If you’re using multiple draw buffers---particularly those that have
floating-point or nonnormalized integer pixel formats---you can clear each
individually bound buffer using glClearBuffer*() functions. Unlike
functions such as glClearColor() and glClearDepth(), which set a clear
value within OpenGL that’s used when glClear() is called, glClearBuffer*()
uses the values passed to it to immediately clear the bound drawing
buffers. Additionally, to reduce the number of function calls associated
with using multiple draw buffers, you can call glClearBufferfi() to
simultaneously clear the depth and stencil buffers (which is effectively
equivalent to calling glClearBuffer*() twice---once for the depth buffer and
once for the stencil buffer).

190 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Table 4.8 Errors Returned by glCheckFramebufferStatus()

Framebuffer Completeness Status Enum Description

GL_FRAMEBUFFER_COMPLETE The framebuffer and its
attachments match the
rendering or reading state
required.

GL_FRAMEBUFFER_UNDEFINED The bound framebuffer is
specified to be the default
framebuffer (i.e.,
glBindFramebuffer()
with zero specified as the
framebuffer), and the
default framebuffer
doesn’t exist.

GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT A necessary attachment
to the bound framebuffer
is uninitialized

GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT There are no images (e.g.,
texture layers or
renderbuffers) attached
to the framebuffer.

GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER Every drawing buffer
(e.g., GL_DRAW_BUFFERi
as specified by
glDrawBuffers()) has an
attachment.

GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER An attachment exists for
the buffer specified for
the buffer specified by
glReadBuffer().

GL_FRAMEBUFFER_UNSUPPORTED The combination of
images attached to the
framebuffer object is
incompatible with the
requirements of the
OpenGL
implementation.

GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE The number of samples
for all images across the
framebuffer’s
attachments do not
match.

Framebuffer Objects 191

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glClearBuffer{fi ui}v(GLenum buffer, GLint drawbuffer,
const TYPE *value);

void glClearBufferfi(GLenum buffer, GLint drawbuffer,
GLfloat depth, GLint stencil);

Clears the buffer indexed by drawbuffer associated with buffer to value.
buffer must be one of GL_COLOR, GL_DEPTH, or GL_STENCIL.

If buffer is GL_COLOR, drawbuffer specifies an index to a particular draw
buffer, and value is a four-element array containing the clear color. If the
buffer indexed by drawbuffer has multiple draw buffers (as specified by a
call the glDrawBuffers()), all draw buffers are cleared to value.

If buffer is GL_DEPTH or GL_STENCIL, drawbuffer must be zero, and value
is a single-element array containing an appropriate clear value (subject to
clamping and type conversion for depth values, and masking and type
conversion for stencil values). Use only glClearBufferfv() for clearing the
depth buffer, and glClearBufferiv() for clearing the stencil buffer.

glClearBufferfi() can be used to clear both the depth and stencil buffers
simultaneously. buffer in this case must be GL_DEPTH_STENCIL.

GL_INVALID_ENUM is generated by glClearbuffer{if ui}v if buffer is not
one of the accepted values listed above. GL_INVALID_ENUM is generated
by glClearBufferfi() if buffer is not GL_DEPTH_STENCIL.
GL_INVALID_VALUE is generated if buffer is GL_COLOR, and drawbuffer
is less than zero, or greater than or equal to GL_MAX_DRAW_BUFFERS;
or if buffer is GL_DEPTH, GL_STENCIL, or GL_DEPTH_STENCIL and
drawbuffer is not zero.

Invalidating Framebuffers

Implementations of OpenGL (including OpenGL ES on mobile or
embedded devices, most often) may work in limited memory
environments. Framebuffers have the potential of taking up considerable
memory resources (particularly for multiple, multisampled color
attachments and textures). OpenGL provides a mechanism to state that a
region or all of a framebuffer is no longer needed and can be released. This
operation is done with either glInvalidateSubFramebuffer() or
glInvalidateFramebuffer().

192 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glInvalidateFramebuffer(GLenum target,
GLsizei numAttachments,
const GLenum *attachments);

void glInvalidateSubFramebuffer(GLenum target,
GLsizei numAttachmens,
const GLenum *attachments,
GLint x, GLint y,
GLsizei width, GLsizei height);

Specifies that a portion, or the entirety, of the bound framebuffer object
are not necessary to preserve. For either function, target must be either
GL_DRAW_FRAMEBUFFER, GL_READ_FRAMEBUFFER, or
GL_FRAMEBUFFER specifying both the draw and read targets at the same
time. attachments provides a list of attachment tokens:
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT, or
GL_STENCIL_ATTACHMENT; and numAttachments specifies how many
entries are in the attachments list.

For glInvalidateSubFramebuffer(), the region specified by lower-left
corner (x, y) with width width, and height height (measured from (x, y)), is
marked as invalid for all attachments in attachments.

Various errors are returned from the calls: A GL_INVALID_ENUM is
generated if any tokens are not from those listed above; A
GL_INVALID_OPERATION is generated if an index of an attachment
(e.g., i from GL_COLOR_ATTACHMENTi) is greater than or equal to the
maximum number of color attachments; A GL_INVALID_VALUE is
generated if any of numAttachments, width, or height are negative.

Writing to Multiple Renderbuffers Simultaneously

Advanced

One feature of using framebuffer objects with multiple renderbuffer (or
textures, as described in Chapter 6, ‘‘Textures’’) is the ability to write to
multiple buffers from a fragment shader simultaneously, often called MRT
(for multiple-render target) rendering. This is mostly a performance
optimization, saving processing the same list of vertices multiple times and
rasterizing the same primitives multiple times.

Writing to Multiple Renderbuffers Simultaneously 193

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

While this technique is used often in GPGPU, it can also be used when
generating geometry and other information (like textures or normal map)
which is written to different buffers during the same rendering pass.
Enabling this technique requires setting up a framebuffer object with
multiple color (and potentially depth and stencil) attachments, and
modification of the fragment shader. Having just discussed setting up
multiple attachments, we’ll focus on the fragment shader here.

As we’ve discussed, fragment shaders output values through their out
variables. In order to specify the correspondence between out variables
and framebuffer attachments, we simply need to use the layout qualifier
to direct values to the right places. For instance, Example 4.12
demonstrates associating two variables with color attachment locations
zero and one.

Example 4.12 Specifying layout Qualifiers for MRT Rendering

layout (location = 0) out vec4 color;
layout (location = 1) out vec4 normal;

If the attachments of the currently bound framebuffer don’t match those
of the currently bound fragment shader, misdirected data (i.e., fragment
shader data written to an attachment with nothing attached) accumulates
in dark corners of the universe, but is otherwise ignored.

Additionally, if you’re using dual-source blending (see ‘‘Dual-Source
Blending’’ on Page 198), with MRT rendering, you merely specify both the
location and index options to the layout directive.

Using the layout qualifier within a shader is the preferred way to associate
fragment shader outputs with framebuffer attachments, but if they are
not specified, then OpenGL will do the assignments during shader linking.
You can direct the linker to make the appropriate associations by using
the glBindFragDataLocation(), or glBindFragDataLocationIndexed()
if you need to also specify the fragment index. Fragment shader
bindings specified in the shader source will be used if specified,
regardless of whether a location was specified using one of these functions.

194 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glBindFragDataLocation(GLuint program,
GLuint colorNumber,
const GLchar *name);

void glBindFragDataLocationIndexed(GLuint program,
GLuint colorNumber,
GLuint index,
const GLchar *name);

Uses the value in color for fragment shader variable name to specify the
output location associated with shader program. For the indexed case,
index specifies the output index as well as the location.

A GL_INVALID_VALUE is generated if program is not a shader program, or
if either index is greater than one, or if colorNumber is greater than or
equal to the maximum number of color attachments.

After a program is linked, you can retrieve a fragment shader variable’s
output location, and source index, if applicable, by calling either
glGetFragDataLocation(), or glGetFragDataIndex().

GLint glGetFragDataLocation(GLuint program,
const GLchar *name);

GLint glGetFragDataIndex(GLuint program,
const GLchar *name);

Returns either the location or index of a fragment shader variable name
associated with the linked shader program program.

A −1 is returned if: name is not the name of applicable variable for
program; if program successfully linked, but doesn’t have an associated
fragment shader; or if program has not yet been, or failed, linking. In the
last case, a GL_INVALID_OPERATION error is also generated.

Selecting Color Buffers for Writing and Reading

The results of a drawing or reading operation can go into or come from
any of the color buffers:

• front, back, front-left, back-left, front-right, or back-right for the
default framebuffer, or

• front, or any renderbuffer attachment for a user-defined framebuffer
object.

Writing to Multiple Renderbuffers Simultaneously 195

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

You can choose an individual buffer to be the drawing or reading target.
For drawing, you can also set the target to draw into more than one buffer
at the same time. You use glDrawBuffer(), or glDrawBuffers() to select the
buffers to be written and glReadBuffer() to select the buffer as the source
for glReadPixels(), glCopyTexImage*(), and glCopyTexSubImage*().

void glDrawBuffer(GLenum mode);
void glDrawBuffers(GLsizei n, const GLenum *buffers);

Selects the color buffers enabled for writing or clearing and disables
buffers enabled by previous calls to glDrawBuffer() or glDrawBuffers().
More than one buffer may be enabled at one time. The value of mode can
be one of the following:

GL_FRONT GL_FRONT_LEFT GL_NONE
GL_BACK GL_FRONT_RIGHT GL_FRONT_AND_BACK
GL_LEFT GL_BACK_LEFT GL_COLOR_ATTACHMENTi
GL_RIGHT GL_BACK_RIGHT

If mode, or the entries in buffers is not one of the above, a
GL_INVALID_ENUM error is generated. Additionally, if a framebuffer
object is bound that is not the default framebuffer, then only GL_NONE
and GL_COLOR_ATTACHMENTi are accepted, otherwise a
GL_INVALID_ENUM error is generated.

Arguments that omit LEFT or RIGHT refer to both the left and right stereo
buffers; similarly, arguments that omit FRONT or BACK refer to both.

By default, mode is GL_BACK for double-buffered contexts.

The glDrawBuffers() routine specifies multiple color buffers capable of
receiving color values. buffers is an array of buffer enumerates. Only
GL_NONE, GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, and
GL_BACK_RIGHT are accepted.

When you are using double-buffering, you usually want to draw only in the
back buffer (and swap the buffers when you’re finished drawing). In some
situations, you might want to treat a double-buffered window as though
it were single-buffered by calling glDrawBuffer(GL_FRONT_AND_BACK)
to enable you to draw to both front and back buffers at the same time.

For selecting the read buffer, use glReadBuffer().

196 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

void glReadBuffer(GLenum mode);

Selects the color buffer enabled as the source for reading pixels for
subsequent calls to glReadPixels(), glCopyTexImage*(),
glCopyTexSubImage*(), and disables buffers enabled by previous calls to
glReadBuffer(). The value of mode can be one of the following:

GL_FRONT GL_FRONT_LEFT GL_NONE
GL_BACK GL_FRONT_RIGHT GL_FRONT_AND_BACK
GL_LEFT GL_BACK_LEFT GL_COLOR_ATTACHMENTi
GL_RIGHT GL_BACK_RIGHT

If mode is not one of the above tokens, a GL_INVALID_ENUM is
generated.

As we’ve seen, when a framebuffer object has multiple attachments, you
can control various aspects of what happens with the renderbuffer at an
attachment, like controlling the scissors box, or blending. You use the
commands glEnablei() and glDisablei() to control capabilities on a
per-attachment granularity.

void glEnablei(GLenum capability, GLuint index);
void glDisablei(GLenum capability, GLuint index);

Enables or disables capability for buffer index.

A GL_INVALID_VALUE is generated if index is greater than or equal to
GL_MAX_DRAW_BUFFERS.

GLboolean glIsEnabledi(GLenum capability, GLuint index);

Specifies whether target is enabled for buffer index.

A GL_INVALID_VALUE is generated if index is outside of the range
supported for target.

Writing to Multiple Renderbuffers Simultaneously 197

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Dual-Source Blending

Advanced

Two of the blend factors already described in this chapters are the second
source blending factors and are special in that they are driven by a second
output in the fragment shader. These factors, GL_SRC1_COLOR and
GL_SRC1_ALPHA, are produced in the fragment shader by writing to an
output whose index is 1 (rather than the default 0). To create such an
output we use the index layout qualifier when declaring it in the fragment
shader. Example 4.13 shows an example of such a declaration.

Example 4.13 Layout Qualifiers Specifying the Index of Fragment
Shader Outputs

layout (location = 0, index = 0) out vec4 first_output;
layout (location = 0, index = 1) out vec4 second_output;

When calling glBlendFunc(), glBlendFunci(), glBlendFuncSeparate(), or
glBlendFuncSeparatei(), the GL_SRC_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_COLOR, or GL_ONE_MINUS_SRC_ALPHA factors
will cause the blending equation’s input to be taken from first_input.
However, passing GL_SRC1_COLOR, GL_SRC1_ALPHA
GL_ONE_MINUS_SRC1_COLOR, or GL_ONE_MINUS_SRC1_ALPHA to
these functions will cause the input to be taken from second_output.
This allows some interesting blending equations to be built up by using
combinations of the first and second sources in each of the source and
destination blend factors.

For example, setting the source factor to GL_SRC1_COLOR and the
destination factor to GL_ONE_MINUS_SRC1_COLOR using one of the
blending functions essentially allows a per-channel alpha to be created in
the fragment shader. This type of functionality is especially useful when
implementing subpixel accurate antialiasing techniques in the fragment
shader. By taking the location of the red, green, and blue color elements in
the pixels on the screen into account, coverage for each element can be
generated in the fragment shader and be used to selectively light each color
by a function of its coverage. Figure 4.4 shows a close-up picture of the red,
green and blue picture elements in a liquid crystal computer monitor. The
subpixels are clearly visible, although when viewed at normal distance, the
display appears white. By lighting each of the red, green, and blue
elements separately, very high-quality antialiasing can be implemented.

198 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Figure 4.4 Close-up of RGB color elements in an LCD panel

Another possible use is to set the source and destination factors in the
blending equation to GL_ONE and GL_SRC1_COLOR. In this
configuration, the first color output is added to the framebuffer’s content,
while the second color output is used to attenuate the framebuffer’s
content. The equation becomes:

RGBdst = RGBsrc0 + RGBsrc1 ∗ RGBdst

This is a classic multiply-add operation and can be used for many
purposes. For example, if you want to render a translucent object with a
colored specular highlight, write the color of the object to
second_output and the highlight color to first_output.

Writing to Multiple Renderbuffers Simultaneously 199

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Dual-Source Blending and Multiple Fragment Shader Outputs

Because the second output from the fragment shader that
is required to implement dual source blending may take from the resources
available to produce outputs for multiple framebuffer attachments (draw
buffers), there are special counting rules for dual-source blending. When
dual-source blending is enabled---that is, when any of the factors specified
to one of the glBlendFunc() functions is one of the tokens that includes
SRC1, the total number of outputs available in the fragment shader may be
reduced. To determine how many outputs may be used (and consequently,
how many framebuffer attachments may be active), query for the value
of GL_MAX_DUAL_SOURCE_DRAW_BUFFERS. Note that the OpenGL
specification only requires that GL_MAX_DUAL_SOURCE_DRAW_BUFFERS
be at least one. If GL_MAX_DUAL_SOURCE_DRAW_BUFFERS
is exactly one, this means that dual source blending and
multiple draw buffers are mutually exclusive and cannot be used together.

Reading and Copying Pixel Data

Once your rendering is complete, you may want to retrieve the rendered
image for posterity. In that case, you can use the glReadPixels() function
to read pixels from the read framebuffer and return the pixels to your
application. You can return the pixels into memory allocated by the
application, or into a pixel pack buffer, if one’s currently bound.

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, void *pixels);

Reads pixel data from the read framebuffer rectangle whose lower-left
corner is at (x, y) in window coordinates and whose dimensions are width
and height, and then stores the data in the array pointed to by pixels.
format indicates the kind of pixel data elements that are read (color,
depth, or stencil value as listed in Table 4.9), and type indicates the data
type of each element (see Table 4.10.)

glReadPixels() can generate a few OpenGL errors. A
GL_INVALID_OPERATION error will be generated if format is set to
GL_DEPTH and there is no depth buffer; or if format is GL_STENCIL and
there is no stencil buffer; or if format is set to GL_DEPTH_STENCIL and
there are not both a depth and a stencil buffer associated with the
framebuffer, or if type is neither GL_UNSIGNED_INT_24_8 nor
GL_FLOAT_32_UNSIGNED_INT_24_8_REV, then GL_INVALID_ENUM is
set.

200 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Table 4.9 glReadPixels() Data Formats

Format Value Pixel Format

GL_RED or
GL_RED_INTEGER a single red color component

GL_GREEN or
GL_GREEN_INTEGER a single green color component

GL_BLUE or
GL_BLUE_INTEGER a single blue color component

GL_ALPHA or
GL_ALPHA_INTEGER a single alpha color component

GL_RG or
GL_RG_INTEGER a red color component, followed by a

green component

GL_RGB or
GL_RGB_INTEGER a red color component, followed by green

and blue components

GL_RGBA or
GL_RGBA_INTEGER a red color component, followed by green,

blue, and alpha components

GL_BGR or
GL_BGR_INTEGER a blue color component, followed by

green and red components

GL_BGRA or
GL_BGRA_INTEGER a blue color component, followed by

green, red, and alpha components

GL_STENCIL_INDEX a single stencil index

GL_DEPTH_COMPONENT a single depth component

GL_DEPTH_STENCIL combined depth and stencil components

You may need to specify which buffer you want to retrieve pixel values
from. For example, in a double-buffered window, you could read the pixels
from the front buffer or the back buffer. You can use the glReadBuffer()
routine to specify which buffer to retrieve the pixels from.

Reading and Copying Pixel Data 201

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

Table 4.10 Data Types for glReadPixels()

Type Value Data Type Packed

GL_UNSIGNED_BYTE GLubyte No

GL_BYTE GLbyte No

GL_UNSIGNED_SHORT GLushort No

GL_SHORT GLshort No

GL_UNSIGNED_INT GLuint No

GL_INT GLint No

GL_HALF_FLOAT GLhalf

GL_FLOAT GLfloat No

GL_UNSIGNED_BYTE_3_3_2 GLubyte Yes

GL_UNSIGNED_BYTE_2_3_3_REV GLubyte Yes

GL_UNSIGNED_SHORT_5_6_5 GLushort Yes

GL_UNSIGNED_SHORT_5_6_5_REV GLushort Yes

GL_UNSIGNED_SHORT_4_4_4_4 GLushort Yes

GL_UNSIGNED_SHORT_4_4_4_4_REV GLushort Yes

GL_UNSIGNED_SHORT_5_5_5_1 GLushort Yes

GL_UNSIGNED_SHORT_1_5_5_5_REV GLushort Yes

GL_UNSIGNED_INT_8_8_8_8 GLuint Yes

GL_UNSIGNED_INT_8_8_8_8_REV GLuint Yes

GL_UNSIGNED_INT_10_10_10_2 GLuint Yes

GL_UNSIGNED_INT_2_10_10_10_REV GLuint Yes

GL_UNSIGNED_INT_24_8 GLuint Yes

GL_UNSIGNED_INT_10F_11F_11F_REV GLuint Yes

GL_UNSIGNED_INT_5_9_9_9_REV GLuint Yes

GL_FLOAT_32_UNSIGNED_INT_24_8_REV GLfloat Yes

Clamping Returned Values

Various types of buffers within OpenGL---most notably floating-point
buffers---can store values with ranges outside of the normal [0, 1] range of
colors in OpenGL. When you read those values back using glReadPixels(),

202 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

you can control whether the values should be clamped to the normalized
range or left at their full range using glClampColor().

void glClampColor(GLenum target, GLenum clamp);

Controls the clamping of color values for floating- and fixed-point
buffers, when target is GL_CLAMP_READ_COLOR. If clamp is set to
GL_TRUE, color values read from buffers are clamped to the range [0, 1];
conversely, if clamp is GL_FALSE, no clamping is engaged. If your
application uses a combination of fixed- and floating-point buffers, set
clamp to GL_FIXED_ONLY to clamp only the fixed-point values;
floating-point values are returned with their full range.

Copying Pixel Rectangles

To copy pixels between regions of a buffer, or even different framebuffers,
use glBlitFramebuffer(). It uses greater pixel filtering during the copy
operation, much in the same manner as texture mapping (in fact, the same
filtering operations, GL_NEAREST and GL_LINEAR are used during the
copy). Additionally, this routine is aware of multisampled buffers and
supports copying between different framebuffers (as controlled by
framebuffer objects).

void glBlitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1,
GLint srcY1, GLint dstX0, GLint dstY0,
GLint dstX1, GLint dstY1,
GLbitfield buffers, GLenum filter);

Copies a rectangle of pixel values from one region of the read framebuffer
to another region of the draw framebuffer, potentially resizing, reversing,
converting, and filtering the pixels in the process. srcX0, srcY0, srcX1,
srcY1 represent the source region where pixels are sourced from, and
written to the rectangular region specified by dstX0, dstY0, dstX1, and
dstY1. buffers is the bitwise-or of GL_COLOR_BUFFER_BIT,
GL_DEPTH_BUFFER_BIT, and GL_STENCIL_BUFFER_BIT, which
represent the buffers in which the copy should occur. Finally, filter
specifies the method of interpolation done if the two rectangular regions
are of different sizes, and must be one of GL_NEAREST or GL_LINEAR; no
filtering is applied if the regions are of the same size.

If there are multiple-color draw buffers, each buffer receives a copy of the
source region.

Copying Pixel Rectangles 203

www.it-ebooks.info

http://www.it-ebooks.info/


ptg9898810

If srcX1 < srcX0, or dstX1 < dstX0, the image is reversed in the horizontal
direction. Likewise, if srcY1 < srcY0 or dstY1 < dstY0, the image is reversed
in the vertical direction. However, If both the source and destination
sizes are negative in the same direction, no reversal is done.

If the source and destination buffers are of different formats, conversion
of the pixel values is done in most situations. However, if the read color
buffer is a floating-point format, and any of the write color buffers are
not, or vice versa; and if the read-color buffer is a signed (unsigned)
integer format and not all of the draw buffers are signed (unsigned)
integer values, the call will generate a GL_INVALID_OPERATION, and no
pixels will be copied.

Multisampled buffers also have an effect on the copying of pixels. If the
source buffer is multisampled, and the destination is not, the samples are
resolved to a single pixel value for the destination buffer. Conversely, if
the source buffer is not multisampled, and the destination is, the source
pixel’s data is replicated for each sample. Finally, if both buffers are
multisampled and the number of samples for each buffer is the same, the
samples are copied without modification. However, if the buffers have a
different number of samples, no pixels are copied, and a
GL_INVALID_OPERATION error is generated.

A GL_INVALID_VALUE error is generated if buffers have other bits set
than those permitted, or if filter is other than GL_LINEAR or
GL_NEAREST.

204 Chapter 4: Color, Pixels, and Framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/

