Utah School of Computing Spring 2013

Class of Algorithms

Visible Surface « Object (Model) Space Algorithms
Determination —Work in the model data space
% CS5600 Computer Graphics > (MR Spens Agortii e
2 Erom Rich Riesenfeld —Work in the projected space
3 Spring 2013

—Most common VSD domain

Utah School of Computing

Back Face Culling: Object Space Back Face Culling: Object Space

A

Z
Back Face Culling Test Back Face Culling: Image Space
)
« For Object Space look at sign of V+ N N9 +//e \‘
Ay
« For Image Space look at sign of 1, < \ 7
m

Computer Graphics CS 5600

Utah School of Computing

Back Face Culling: Image Space

Utah School of Computing 7

Spring 2013

Back Face Culling

» Completes the job for convex
polyhedral objects

» Nonconvex objects need additional
processing beyond back face
culling

Utah School of Computing 8

Back Face Culling: Examples

©

Utah School of Computing 9

Back Face Culling: Examples

©

Utah School of Computing 10

Back Face Culling: Examples

©

0

Utah School of Computing 11

Computer Graphics CS 5600

Back-Face Culling

« On the surface of a closed manifold, polygons whose
normals point away from the camera are always
occluded:

N

& -]

— \ Note: backface culling
alone doesn’t solve the
hidden-surface problem!

Utah School of Computing

Back-Face Culling

» Not rendering backfacing polygons
improves performance
— By how much?

* Reduces by about half the number of polygons
to be considered for each pixel

Spring 2013

Silhouettes

e For Object Space v-n=0

» For Image Space N, = 0

Utah School of Computing 14

Occlusion

« For most interesting scenes, some polygons will overlap:

&= |5

« To render the correct image, we need to determine which
polygons occlude which

Painter’'s Algortihm

» How do painter’s solve this?

Painter’'s Algorithm

« Simple approach: render the polygons from back to
front, “painting over” previous polygons:

| = |

— Draw blue, then green, then orange
 Will this work in the general case?

Computer Graphics CS 5600

Painter’'s Algortihm

* How do painter’s solve this?

 Sort the polygons in depth order
» Draw the polygons back-to-front
* QED

Utah School of Computing

Spring 2013

Painter’s Algorithm: Problems

« Intersecting polygons present a problem

« Even non-intersecting polygons can form a
cycle with no valid visibility order:

Analytic Visibility Algorithms

Early visibility algorithms computed the set of visible
polygon fragments directly, then rendered the
fragments to a display:

A

— Now known as analytic visibility algorithms

Analvtic Visibility Algorithms

* What is the minimum worst-case cost of computing
the fragments for a scene composed of n polygons?

* Answer:
0O(n?)

Analytic Visibility Algorithms

» So, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

» We'll talk about two:

— Binary Space-Partition (BSP) Trees
— Warnock’s Algorithm

Binary Space Partition Trees (1979)

« BSP tree: organize all of space (hence
partition) into a binary tree
— Preprocess: overlay a binary tree on objects in the
scene
— Runtime: correctly traversing this tree enumerates
objects from back to front
— ldea: divide space recursively into half-spaces by
choosing splitting planes
« Splitting planes can be arbitrarily oriented
« Notice: nodes are always convex

BSP Trees: Objects

g
2N

Computer Graphics CS 5600

Utah School of Computing Spring 2013

BSP Trees: Objects BSP Trees: Objects
S A\

&% 666 €666
g
Y

&

BSP Trees: Objects BSP Trees: Objects

Rendering BSP Trees Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (T is a leaf node)
renderObject(T)
else {
if (eye on left side of T->plane)
near = T->left; far = T->right;
else
near = T->right; far = T->left;
renderBSP(far);
renderBSP(near);

¥

Computer Graphics CS 5600

Utah School of Computing Spring 2013

Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees

Computer Graphics CS 5600

Utah School of Computing Spring 2013

Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees

Computer Graphics CS 5600

Utah School of Computing Spring 2013

Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees 3D Polygons: BSP Tree Construction

 Split along the plane containing any polygon

« Classify all polygons into positive or negative
half-space of the plane
— If a polygon intersects plane, split it into two

» Recurse down the negative half-space

» Recurse down the positive half-space

Computer Graphics CS 5600

Utah School of Computing

Polygons: BSP Tree Traversal

« Query: given a viewpoint, produce an ordered list of
(possibly split) polygons from back to front:

BSPnode: :Draw(Vec3 viewpt)
Classify viewpt: in + or - half-space of node->plane?
/* Call that the “near” half-space */
farchild->draw(viewpt);
render node->polygon; /* always on node->plane */
nearchild->draw(viewpt);

« Intuitively: at each partition, draw the stuff on the
farther side, then the polygon on the partition, then
the stuff on the nearer side

Spring 2013

Discussion: BSP Tree Cons

» No bunnies were harmed in my example

» But what if a splitting plane passes through an
object?
— Split the object; give half to each node:

®-% %

— Worst case: can create up to O(n3) objects!

BSP Demo

« Nice demo:

http://www.symbolcraft.com/graphics/bsp/

Summary: BSP Trees

* Pros:
— Simple, elegant scheme
— Only writes to framebulffer (i.e., painters algorithm)
« Once very popular for video games (but getting less so)
* Widely used in ray-tacing
e Cons:
— Computationally intense preprocess stage restricts
algorithm to static scenes
— Worst-case time to construct tree: O(n3)

— Splitting increases polygon count
« Again, O(n3) worst case

Warnock’s Algorithm (1969)

PIXAR uses a similar scheme

« Elegant scheme based on a powerful general
approach common in graphics: if the situation
is too complex, subdivide
— Start with a root viewport and a list of all primitives
— Then recursively:

« Clip objects to viewport

< If number of objects incident to viewport is zero or one,
visibility is trivial

« Otherwise, subdivide into smaller viewports, distribute
primitives among them, and recurse

Computer Graphics CS 5600

Warnock’s Algorithm

T =

What is the

terminating ' « f

condition?

|«
f

How to determine " ' ' '

'

the correct visible
surface in this (1) (2

= =
VA v]

(3 (5)

Utah School of Computing Spring 2013

Warnock’s Algorithm Warnock’s Algorithm
* What is the = * What is the —
terminating ' = i B | terminating ' - { -«
condition? ’ ' I ' ' condition? ’ ' I ' '
— One polygon per cell — One polygon per cell
* How to determine the . - * How to determine the . -
correct visible (1) (2) correct visible (1) (2)
surface in this case? *_ : surface in this case? *_ :
B 1 — Cell =single pixel — TH
- - &l - - &l
ashd)s sl ashd)s sl
(3) (5) (3) (5)
Warnock’s Algorithm The Z-Buffer Algorithm
¢ Pros: » Both BSP trees and Warnock’s algorithm

were proposed when memory was expensive
— Example: first 512x512 framebuffer > $50,000!
» Ed Catmull (mid-70s) proposed a radical new

— Very elegant scheme
— Extends to any primitive type

» Cons:
— Hard to embed hierarchical schemes in hardware approach called z-buffering.
— Complex scenes usually have small polygons and » The big idea: resolve visibility independently
high depth complexity at each pixel

+ Thus most screen regions come down to the
single-pixel case

The Z-Buffer Algorithm The Z-Buffer Algorithm
« We know how to rasterize polygons into an * What happens if multiple primitives occupy
image discretized into pixels: the same pixel on the screen? Which is

allowed to paint the pixel?

I) I

| A)] N I S

Computer Graphics CS 5600

Utah School of Computing

The Z-Buffer Algorithm

« |dea: retain depth (Z in eye coordinates)
through projection transform
— Use canonical viewing volumes

— Can transform canonical perspective volume into
canonical parallel volume with:

10 0 0 n o0 0 0
” 01 0 0 0 n 0 0
= 1 —Zmin |=
00 -
1+ Zmin 1+ Zmin 00 (n f) nf
o0 -1 00 1 0

Spring 2013

z-Buffer (Depth Buffer)
Conceptually:

Sort (max ny)
(x.y)

Sort (min ny)
(xy)

Utah School of Computing

The Z-Buffer Algorithm

« Augment framebuffer with Z-buffer or depth
buffer which stores Z value at each pixel
— At frame beginning initialize all pixel depths to «
— When rasterizing, interpolate depth (Z) across
polygon and store in pixel of Z-buffer
— Suppress writing to a pixel if its Z value is more
distant than the Z value already stored there

Interpolating Z

« Edge equations: Z is just another planar parameter:
z=(-D-Ax-By)/C
I1f walking across scanline by (4x)
Zney =2 (AIC)(AX)
— Look familiar?
— Total cost:

+ 1 more parameter to
increment in inner loop

« 3x3 matrix multiply for setup

« Edge walking: just interpolate Z along edges and across
spans

The Z-Buffer Algorithm

e How much memory does the Z-buffer use?

* Does the image rendered depend on the
drawing order?

* Does the time to render the image depend on
the drawing order?

* How does Z-buffer load scale with visible
polygons? With framebuffer resolution?

z-Buffer

Computer Graphics CS 5600

N

-2 -4 -6 -8-10-12-14-16-18-20-22

Spring 2008 Utah School of Computing

Utah School of Computing

Spring 2013

< z-Buffer (dum 7
-10-12-14-16-18-20-2
=00
=00
=00
9 -00
=00
-0
-0
v -0
=00
=00
=00
=00
=00
=00
=00
L] -0
Spring 2008 Utah School of Computin 67

z-Buffer: Rehﬂbr .

. z-Buffer: ReFdlbr .

2 -4 -6 -8-10-12-14-16-18-20-

[HNEEEENEEEN|
TITTTTITTTT]

]

S SIS B B R R R E E S B E éE

Utah School of Computing

2 -4 -6 -8-10-12-14-16-18-20-

. z-Buffer: ReI” der

BEEEEEEEEEE o © - BE

Utah School of Computing

~
=

Computer Graphics CS 5600

2 -4 -6 -8-10-12-14-16-18-20-
=00
=00
=00
9 -0
=00
=00
=00
v -0
=00
=00
=00
=00
=00
=00
=00
=00
Spring 2008 tah School of Computing 68
1
. z-Buffer: Rehider
2 .4 -6 -8-10-12-14-16-18-20-22
5|
o)
o9
o)
‘A =
i =
I°g
oG
o0}
o0}
o)
o9
o
Utah School of Computing 70
. z-Buffer: Refdlbr .
-2 -4 -6 -8-10-12-14-16-18-20-22
5|
o9
v =
o0}
e
o)
o]
o
o9
o)
o
Utah School of Computing 72

Utah School of Computing Spring 2013

< z-Buffer: Refdlbr 7 < z-Buffer: Rehﬂbr 7
-2 -4 -6 -8-10-12-14-16-18-20- -2 -4 -6 -8-10-12-14-16-18-20-22
5| 5|
v i
1
. z-Buffer: ReFdlbr 7 . z-Buffer: Rehider
2 -4 -6 -8-10-12-14-16-18-20- -2 -4 -6 -8-10-12-14-16-18-20-22

1 l4
(ll (ll

Utah School of Computing 75 Utah School of Computing 76

|
HEEBEEER & 5o o - BE
EEEE - oo o - BE

3[3[8

) z-Buffer: ReI” der ,) z-Buffer: Ref der ,
- -2 -4 -6 -8-10-12-14-16-18-20- 0 N -2 -4 -6 -8-10-12-14-16-18-20-22
I
| |]
| o] |]
|0 | o]
18 18
i 1
o) 15)
] Il |
B [l lllllllllllllll@
Utah School of Computing 77 Utah School of Computing

Computer Graphics CS 5600

Utah School of Computing Spring 2013

< z-Buffer: Refdlbr 7 < z-Buffer: Rehﬂbr 7
2 -4 -6 -8-10-12-14-16-18-20- 0 -2 -4 -6 -8-10-12-14-16-18-20-22
<
I

o) o9
] A]
20} o0
18] 18]
y i 1
15} 15}
K B B

e

Utah School of Computing 79 tah School of Computing 80

. z-Buffer: ReF dlbr 7 . z-Buffer: Rehder ,
2 -4 -6 -8-10-12-14-16-18-20- -2 -4 -6 -8-10-12-14-16-18-20-22
I = [HEEN ITT]
17 TTRIT 1111
<
I
e o
\ o] o]
= o
18] 18]
17} f
15) 15)
< 14 14
o o
Utah School of Computing 81 Utah School of Computing 82

. z-Buffer: Rel*dlbr . . z-Buffer: Refdlbr .

2 -4 -6 -8-10-12-14-16-18-20- T 2 4 6 -8-10-12-14-16-18-20-22
&

17

o]
o) o]
0])
18] 18|
1 1
15) 15)
14 14
o]
Utah School of Computing 83 Utah School of Computing 84

Computer Graphics CS 5600

Utah School of Computing Spring 2013

< z-Buffer: Refdlbr 7 . z-Buffer: Rehﬂbr 7

2 4 6 8.10-12-14-16-18-20- _ S 2 4 6 .8-10-12-14-16-18-20-22

I i
o) o9
o) e
20} o0
18] 18]
1 1
15} 15}
B B
e
Utah School of Computing 85 tah School of Computing 86
1
. z-Buffer: ReFdlbr . . z-Buffer: Rehder ,
T 2 -4 6 -8-10-12-14-16-18-20- T 2 -4 -6 -8-10-12-14-16-18-20-22
i

Utah School of Computing Utah School of Computing 88

. z-Buffer: Rel*dlbr . . z-Buffer: Refdlbr .

2 4 6 -8-10-12-14-16-18-20- T 2 4 6 -8-10-12-14-16-18-20-22
LN
I i
X
B B
T i
B B
@ i
ge
Utah School of Computing 89 Utah School of Computing %

Computer Graphics CS 5600

Utah School of Computing Spring 2013

. z-Buffer: ReFdIbr z . z-Buffer: Rehﬂbr .
S, 4 6 8.10-12-14-16-18-20- S 2 4 6 .8-10-12-14-16-18-20-22
I
N N
18| 18|
4 1 [
15} 15}
B B
e
Utah School of Computing 91 ah School of Computing 92

1
z-Buffer: ReFdlbr . z-Buffer: Rehdler ,

2 -4 6 -8-10-12-14-16-18-20- 2 -4 -6 -8-10-12-14-16-18-20-22

N

N

Utah School of Computing Utah School of Computing 94

) z-Buffer: Rel*dlbr . . z-Buffer: Refdlbr .

2 -4 6 -8-10-12-14-16-18-20- T 2 4 6 -8-10-12-14-16-18-20-22

I
18] 18|
1 1
15) 15)
14 14
o]
Utah School of Computing 9% Utah School of Computing 9%

Computer Graphics CS 5600

Utah School of Computing Spring 2013

z-Buffer: Rendering (done) , z-Buffer: REdIt

-2 -4 -6 -8-10-12-14-16-18-20-22 2 -4 -6 -8-10-12-14-16-18-20-22

A

18 18
4 1 1
B f i
14 (| 14
il = 97 Utah School of Computing 98
< z-Buffer: Pros , < z-Buffer: Cons ,
» Simple algorithm * Memory intensive
» Easy to implement in hardware Hard to do antialiasing
» Complexity is order N, for polygons Hard to simulate translucent polygons
* No po|ygon processing order required » Precision issues (scintillating, worse with

« Easily handles polygon interpenetration perspective projection)

Utah School of Computing 99 Utah School of Computing 100

< z-Buffer Algorithm < z-Buffer Algorithm _,

» As a polygon P is scan converted

—Calculate depth z(x,y) at each pixel
(x,y) being processed

—Compare z(x,y) with z-Buffer(x,y)

—Set depth to max (min) values —Replace z-Buffer(x,y) with z(x,y) if
closer to eye

« Initialize buffer

—Set background intensity, color <r,g,b>

Utah School of Computing 101 Utah School of Computing 102

Computer Graphics CS 5600

Utah School of Computing

< z-Buffer Algorithm

 Convert all polygons
» Correct image gets generated when done

» OpenGL.: depth-buffer = z-Buffer

Utah School of Computing 103

Spring 2013

a-Buffer Algorithm _ ,

» Generates linked list for each pixel

» Memory of all contributions allows for
proper handling of many advanced
techniques

« Even more memory intensive
» Widely used for high quality rendering

Utah School of Computing 104

a-Buffer Algorithm: Example

Utah School of Computing 105

N

a-Buffer ,

2 -4 -6 -8-10-12-14-16-18-20-22

il

(ll

Utah School of Computing 106

_
S EEEHREEE S EEEEE

1
) a-Buffer: Rehder ,

S 12345678910 12 14 16 18 20 22

il

(|

Utah School of Computing 107

RURIR[RISISTRIRIRIS[IISTITR])8

&

1
a-Buffer: Rehder ,

Computer Graphics CS 5600

S 12345678910 12 14 16 18 20 22

[[HNEEENEEE NN

SUSIRIRISIRIRISIRIRISIRIR

Utah School of Computing 108

Utah School of Computing Spring 2013

) a-Buffer: Rehder , < a-Buffer: Rehder ,
‘12345678910 12 14 16 18 20 22 ‘12345678910 12 14 16 18 20 22
%E "
BEE -
s b 11
o 5]
A] v od
7] o
ES s
o B
] &
] o
o] s
o o
ES]
Utah School of Computin 109 tah School of Computing 110

1 1
< a-Buffer: Rehder , . a-Buffer: Rehder ,

12345678910 12 14 16 18 20 22 " 12345678910 12 %4 16 18 20 22

RRRRRRRRRSME@
T T T 1T
TTTTTT

RUSIRIRIKIRIRIR IR

Utah School of Computing 111 Utah School of Computing 112

. a-Buffer: Rehder ,) a-Buffer: Rehder ,
" 12345678910 12 14 16 18 20 22 " 12345678910 12 14 16 18 20 22
I 2|
i ; i
] il]
0]) 0]
o
g g
0} s
o] O]
Es 1 s
od (Hl od
g 11 g
Utah School of Computing 113 Utah School of Computing 114

Computer Graphics CS 5600

Utah School of Computing

1
. a-Buffer: Rehder

Spring 2013

S 12345678910 12 14 16 18 20 22

||

T TTTTT1

RIEREE

|

l4

(ll

]IR

Utah School of Computing

115

&

1
a-Buffer: Rehder

S 12345678910 12 14 16 18 20 22

||

T TTTTT1

|

BB BN EEEE

tah School of Computing

116

1
. a-Buffer: Rehder

T 12345678910 2 14 16 18 20 22

|

T TTTTT1

|

|

EEIENEREE

ITTTTTITTITTITITT

Utah School of Computing

17

P

1
a-Buffer: Rehder

T 12345678910 12 14 16 18 20 22

|

T TTTTT1

|

|

HESEREE

Utah School of Computing

118

1
. a-Buffer: Rehdkr

S 12345678910 12 14 16 18 20 22

|

T TTTTT1

|

|

Utah School of Computing

119

&

1
a-Buffer: Rehdkr

Computer Graphics CS 5600

S 12345678910 12 14 16 18 20 22

I

T TTTTTT1

|

|

i IE R R

Utah School of Computing 120

Utah School of Computing

1
. a-Buffer: Rehder

Spring 2013

S 12345678910 12 14 16 18 20 22

I

|

|

REESEEEE

Utah School of Computing

121

&

1
a-Buffer: Rehder ,

S 12345678910 12 14 16 18 20 22

1T 11

HNEEEE

|

|

tah School of Computing

122

1
. a-Buffer: Rehder

T 12345678910 2 14 16 18 20 22

*

REESEEEE

Utah School of Computing

123

P

1
a-Buffer: Rehder ,

T 12345678910 12 14 16 18 20 22

REESEEEE

Utah School of Computing

124

1
. a-Buffer: Rehdkr

S 12345678910 12 14 16 18 20 22

BEENEEERE

Utah School of Computing

125

&

1
a-Buffer: Rehder ,

Computer Graphics CS 5600

S 12345678910 12 14 16 18 20 22

i IE R R

Utah School of Computing

126

Utah School of Computing

Spring 2013

1
) a-Buffer: Rehder ,

S 12345678910 12 14 16 18 20 22

Utah School of Computing

127

&

1
a-Buffer: Rehder ,

S 12345678910 12 14 16 18 20 22

tah School of Computing

128

1
< a-Buffer: Rehder ,

T 12345678910 2 14 16 18 20 22

Utah School of Computing

129

P

1
a-Buffer: Rehder ,

T 12345678910 12 14 16 18 20 22

RIERNE

Utah School of Computing

130

1
. a-Buffer: Rehder ,

S 12345678910 12 14 16 18 20 22

Utah School of Computing

131

&

1
a-Buffer: Rehder ,

S 12345678910 12 14 16 18 20 22

Utah School of Computing

132

Computer Graphics CS 5600

Utah School of Computing

Spring 2013

P

1
a-Buffer: Rehder ,

S 12345678910 12 14 16 18 20 22

|

===

u

h School of Computing

133

1
. a-Buffer: Rehdler ,

S 12345678910 12 14 16 18 20 22

Utah School of Computing 134

&

1
a-Buffer: Rehider ,

T 12345678910 2 14 16 18 20 22

U

ah School of Computin

a-Buffer: Rendering (done)

S 12345678910 12 14 16 18 20 22

HEEE

Utah School of Computing 136

&

a-Buffer: REdUIt

T 12345678910 12 14 16 18 20 22

18|

15}

{
(Hl

u

&ah School of Computing

137

OpenGL Architecture
|

Per Vertex

Polynomial || Operations &

Evaluator Primitive

l Assembly
Display Per Fragment Frame
CPU List Rasterization f— Operations Buffer

Texture

Memory

Pixel
Operations

Computer Graphics CS 5600

Utah School of Computing

Depth Buffering and
Hidden Surface Removal

<8

1
Color ; 1 g) | Depth
Buffer u 1 < uul\ Buffer

Display

Spring 2013

Depth Buffering Using OpenGL

®Request a depth buffer

@Enable depth buffering

®Clear color and depth buffers

@®Render scene
®Swap color buffers

An Updated Program Template

void main(int argc, char** argv)
{
glutlnit(&argc, argv);

glutlnitDis IayModeg_GLUT RGB |
GLUT_DOUBLE | GLUT_DEPTH):

)glutCreateWindow(“Tetrahedron”

initQ;

glutldleFunc(idle);
glutDisplayFunc(display);
glutMainLoop();

}

An Updated Program Template (cont.)

void init(void)
glClearColor(0.0, 0.0, 1.0, 1.0);

glEnable(GL_DEPTH_TEST);
}

void idle(void)
glutPostRedisplay();

An Updated Program Template (cont.)

void drawScene(void)

GLfloat vertices[] = { ... };
GLfloat colors[] = { ... };

glClear(GL_COLOR_BUFFER BIT |
GL_DEPTH_BUFFER BIT);
glBegin(GL_TRIANGLE_STRIP);

glENdQ);
glutSwapBuffers();

Computer Graphics CS 5600

The End
Visible Surface

Determination

Lecture Set 10

144

