
Utah School of Computing Spring 2013

Computer Graphics CS 5600

Visible Surface
Determination

CS5600 Computer Graphics
From Rich Riesenfeld

Spring 2013Le
ct

ur
e

S
et

 1
0

Utah School of Computing

Class of Algorithms

• Object (Model) Space Algorithms

– Work in the model data space

• Image Space Algorithms

– Work in the projected space

– Most common VSD domain

Utah School of Computing 3

Back Face Culling: Object Space

z

v

v

v
nn

n





n




Utah School of Computing 4

Back Face Culling: Object Space

z
n n 



Utah School of Computing 5

Back Face Culling Test

• For Object Space look at sign of

• For Image Space look at sign of z
n

nv 

Utah School of Computing 6

z

Back Face Culling: Image Space

nn

n

n








Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 7

z

Back Face Culling: Image Space

n n


Utah School of Computing 8

Back Face Culling

• Completes the job for convex
polyhedral objects

• Nonconvex objects need additional
processing beyond back face
culling

Utah School of Computing 9

Back Face Culling: Examples

Utah School of Computing 10

Back Face Culling: Examples

Utah School of Computing 11

Back Face Culling: Examples Back-Face Culling

• On the surface of a closed manifold, polygons whose
normals point away from the camera are always
occluded:

Note: backface culling
alone doesn’t solve the

hidden-surface problem!

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Back-Face Culling

• Not rendering backfacing polygons
improves performance
– By how much?

• Reduces by about half the number of polygons
to be considered for each pixel

Utah School of Computing 14

Silhouettes

• For Object Space

• For Image Space 0
z

n

0v n 

Occlusion

• For most interesting scenes, some polygons will overlap:

• To render the correct image, we need to determine which
polygons occlude which

Painter’s Algortihm

• How do painter’s solve this?

Painter’s Algorithm
• Simple approach: render the polygons from back to

front, “painting over” previous polygons:

– Draw blue, then green, then orange

• Will this work in the general case?

Painter’s Algortihm

• How do painter’s solve this?

• Sort the polygons in depth order

• Draw the polygons back-to-front

• QED

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Painter’s Algorithm: Problems

• Intersecting polygons present a problem

• Even non-intersecting polygons can form a
cycle with no valid visibility order:

Analytic Visibility Algorithms

• Early visibility algorithms computed the set of visible
polygon fragments directly, then rendered the
fragments to a display:

– Now known as analytic visibility algorithms

Analytic Visibility Algorithms

• What is the minimum worst-case cost of computing
the fragments for a scene composed of n polygons?

• Answer:
O(n2)

Analytic Visibility Algorithms

• So, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

• We’ll talk about two:
– Binary Space-Partition (BSP) Trees

– Warnock’s Algorithm

Binary Space Partition Trees (1979)

• BSP tree: organize all of space (hence
partition) into a binary tree
– Preprocess: overlay a binary tree on objects in the

scene

– Runtime: correctly traversing this tree enumerates
objects from back to front

– Idea: divide space recursively into half-spaces by
choosing splitting planes

• Splitting planes can be arbitrarily oriented

• Notice: nodes are always convex

BSP Trees: Objects

Utah School of Computing Spring 2013

Computer Graphics CS 5600

BSP Trees: Objects BSP Trees: Objects

BSP Trees: Objects BSP Trees: Objects

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (T is a leaf node)

renderObject(T)
else {

if (eye on left side of T->plane)
near = T->left; far = T->right;

else
near = T->right; far = T->left;

renderBSP(far);
renderBSP(near);

}

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;

3D Polygons: BSP Tree Construction

• Split along the plane containing any polygon

• Classify all polygons into positive or negative
half-space of the plane
– If a polygon intersects plane, split it into two

• Recurse down the negative half-space

• Recurse down the positive half-space

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Polygons: BSP Tree Traversal

• Query: given a viewpoint, produce an ordered list of
(possibly split) polygons from back to front:

BSPnode::Draw(Vec3 viewpt)

Classify viewpt: in + or - half-space of node->plane?

/* Call that the “near” half-space */

farchild->draw(viewpt);

render node->polygon; /* always on node->plane */

nearchild->draw(viewpt);

• Intuitively: at each partition, draw the stuff on the
farther side, then the polygon on the partition, then
the stuff on the nearer side

• No bunnies were harmed in my example

• But what if a splitting plane passes through an
object?
– Split the object; give half to each node:

– Worst case: can create up to O(n3) objects!

Discussion: BSP Tree Cons

Ouch

BSP Demo

• Nice demo:

http://www.symbolcraft.com/graphics/bsp/

Summary: BSP Trees
• Pros:

– Simple, elegant scheme
– Only writes to framebuffer (i.e., painters algorithm)

• Once very popular for video games (but getting less so)
• Widely used in ray-tacing

• Cons:
– Computationally intense preprocess stage restricts

algorithm to static scenes
– Worst-case time to construct tree: O(n3)
– Splitting increases polygon count

• Again, O(n3) worst case

Warnock’s Algorithm (1969)

• Elegant scheme based on a powerful general
approach common in graphics: if the situation
is too complex, subdivide
– Start with a root viewport and a list of all primitives

– Then recursively:
• Clip objects to viewport

• If number of objects incident to viewport is zero or one,
visibility is trivial

• Otherwise, subdivide into smaller viewports, distribute
primitives among them, and recurse

PIXAR uses a similar scheme

Warnock’s Algorithm

• What is the
terminating
condition?

• How to determine
the correct visible
surface in this
case?

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Warnock’s Algorithm

• What is the
terminating
condition?
– One polygon per cell

• How to determine the
correct visible
surface in this case?

Warnock’s Algorithm

• What is the
terminating
condition?
– One polygon per cell

• How to determine the
correct visible
surface in this case?
– Cell = single pixel

Warnock’s Algorithm

• Pros:
– Very elegant scheme

– Extends to any primitive type

• Cons:
– Hard to embed hierarchical schemes in hardware

– Complex scenes usually have small polygons and
high depth complexity

• Thus most screen regions come down to the
single-pixel case

The Z-Buffer Algorithm

• Both BSP trees and Warnock’s algorithm
were proposed when memory was expensive
– Example: first 512x512 framebuffer > $50,000!

• Ed Catmull (mid-70s) proposed a radical new
approach called z-buffering.

• The big idea: resolve visibility independently
at each pixel

The Z-Buffer Algorithm

• We know how to rasterize polygons into an
image discretized into pixels:

The Z-Buffer Algorithm

• What happens if multiple primitives occupy
the same pixel on the screen? Which is
allowed to paint the pixel?

Utah School of Computing Spring 2013

Computer Graphics CS 5600

The Z-Buffer Algorithm

• Idea: retain depth (Z in eye coordinates)
through projection transform
– Use canonical viewing volumes

– Can transform canonical perspective volume into
canonical parallel volume with:

 
















































0100

00

000

000

0100
11

1
00

0010

0001

nffn

n

n

z

z

z

M

min

min

min

Utah School of Computing 62

z-Buffer (Depth Buffer)

Conceptually:

)(max
),(

zSort xx
yx

z xy

)(min
),(

zSort xx
yx

z xy

The Z-Buffer Algorithm

• Augment framebuffer with Z-buffer or depth
buffer which stores Z value at each pixel
– At frame beginning initialize all pixel depths to 
– When rasterizing, interpolate depth (Z) across

polygon and store in pixel of Z-buffer

– Suppress writing to a pixel if its Z value is more
distant than the Z value already stored there

Interpolating Z

• Edge equations: Z is just another planar parameter:

z = (-D - Ax – By) / C

If walking across scanline by (x)

znew = z – (A/C)(x)

– Look familiar?

– Total cost:
• 1 more parameter to

increment in inner loop

• 3x3 matrix multiply for setup

• Edge walking: just interpolate Z along edges and across
spans

The Z-Buffer Algorithm

• How much memory does the Z-buffer use?

• Does the image rendered depend on the
drawing order?

• Does the time to render the image depend on
the drawing order?

• How does Z-buffer load scale with visible
polygons? With framebuffer resolution?

Spring 2008 Utah School of Computing 66

z-Buffer z
- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Spring 2008 Utah School of Computing 67

z-Buffer (dup)

-2 - 4 -6 -8

z
- 10 - 12 - 14 -16 - 18 -20 - 22

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Spring 2008 Utah School of Computing 68

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

z-Buffer: Render z
- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 69

z-Buffer: Render z
- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-10

Utah School of Computing 70

z-Buffer: Render

9

10

z

9
















- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 71

z-Buffer: Render z

10
9
9
















- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 72

z-Buffer: Render z

10
9
9
8















- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 73

z-Buffer: Render z

10
9
9
8
8














- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 74

z-Buffer: Render z

10
9
9
8
8
8













- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 75

z-Buffer: Render z

10
9
9
8
8
8
















- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 76

z-Buffer: Render z

10
9
9
8
8
8

18














- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 77

z-Buffer: Render z

10
9
9
8
8
8

18
17













- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 78

z-Buffer: Render z

10
9
9
8
8
8

18
17
15












- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 79

z-Buffer: Render z

10
9
9
8
8
8

18
17
15
14










- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 80

z-Buffer: Render z

10
9
9
8
8
8

18
17
15
14










- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 81

z-Buffer: Render z

10
9
9
8
8
8

18
17
15
14

17








- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 82

z-Buffer: Render z

18
17
15
14

17
10
9
9
8
8
8









- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 83

z-Buffer: Render z

18
17
15
14

17
10
9
9
8
8
8









- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 84

z-Buffer: Render z

18
17
15
14

17
10
9
9
8
8
8









- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 85

z-Buffer: Render z

18
17
15
14

17
10
9
9
8
8
8









- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 86

z-Buffer: Render z

9
9
8
8
8

18
17
15
14

10
17








- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 87

z-Buffer: Render z

9
9
8
8
8

18
17
15
14

10
17








- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 88

z-Buffer: Render z

9
9
8
8
8

18
17
15
14

10
17

20








- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 89

z-Buffer: Render z

9
9
8
8

18
17
15
14

8
20
20

10
17






- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 90

z-Buffer: Render z

9
8
8
8

18
17
15
14

20
20

9
10
17






- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 91

z-Buffer: Render z

4
9
8
8
8

18
17
15
14

10
17

20
20







- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 92

z-Buffer: Render z

8
8
8

18
17
15
14

4
10
17

6

20
20







- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 93

z-Buffer: Render z

8
8

18
17
15
14

4
10
17

6
7

20
20







- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 94

z-Buffer: Render z

8
8

18
17
15
14

4
10
17

6
7

20
20







- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 95

z-Buffer: Render z

8
8

18
17
15
14

20
20

4
10
17

6
7







- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 96

z-Buffer: Render z

8
8

18
17
15
14

20

4
10
17

6
7

11







- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 97

z-Buffer: Rendering (done) z

8
8

18
17
15
14

20
11

4
10
17

6
7







- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 98

z-Buffer: Result z

8
8

18
17
15
14

20
11

4
10
17

6
7







- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

Utah School of Computing 99

z-Buffer: Pros

• Simple algorithm

• Easy to implement in hardware

• Complexity is order N, for polygons

• No polygon processing order required

• Easily handles polygon interpenetration

z

Utah School of Computing 100

z-Buffer: Cons

• Memory intensive

• Hard to do antialiasing

• Hard to simulate translucent polygons

• Precision issues (scintillating, worse with
perspective projection)

z

Utah School of Computing 101

z-Buffer Algorithm

• Initialize buffer

– Set background intensity, color <r,g,b>

– Set depth to max (min) values

z

Utah School of Computing 102

z-Buffer Algorithm

• As a polygon P is scan converted
– Calculate depth z(x,y) at each pixel

(x,y) being processed

– Compare z(x,y) with z-Buffer(x,y)

– Replace z-Buffer(x,y) with z(x,y) if
closer to eye

z

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 103

z-Buffer Algorithm

• Convert all polygons

• Correct image gets generated when done

• OpenGL: depth-buffer = z-Buffer

z

Utah School of Computing 104

a-Buffer Algorithm z

• Generates linked list for each pixel

• Memory of all contributions allows for
proper handling of many advanced
techniques

• Even more memory intensive

• Widely used for high quality rendering

Utah School of Computing 105

a-Buffer Algorithm: Example z

Utah School of Computing 106

a-Buffer z
- 10 - 12 - 14 -16 - 18 -20 - 22-2 - 4 -6 -8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Utah School of Computing 107

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9





















Utah School of Computing 108

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10



















Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 109

a-Buffer: Render

9

10

z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

9


















Utah School of Computing 110

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9

















Utah School of Computing 111

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
















Utah School of Computing 112

a-Buffer: Render z10 12 14 16 18 20 2210 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
8














Utah School of Computing 113

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
8
8













Utah School of Computing 114

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
8
8













Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 115

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
8
8

18













Utah School of Computing 116

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
8
8

18
17












Utah School of Computing 117

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
8
8

18
17
15











Utah School of Computing 118

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
8
8

18
17
15
14










Utah School of Computing 119

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
8
8

18
17
15
14









Utah School of Computing 120

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

10
9
9
8
8
8

18
17
15
14

17









Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 121

17

9
8
8
8

9
10

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

18
17
15
14

17








Utah School of Computing 122

17
1710

9
9
8
8
8

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

18
17
15
14

17









Utah School of Computing 123

10
9
9
8
8
8

17
17

17

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

18
17
15
14

17








Utah School of Computing 124

17
17

18
18

10
9
9
8
8
8

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

18
17
15
14

17









Utah School of Computing 125

17
17

18
18
19

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

9
9
8
8
8

18
17
15
14

10
17








Utah School of Computing 126

17
17

18
18
19
19

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

9
9
8
8
8

18
17
15
14

10
17









Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 127

17
17

18
18
19
19

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

9
9
8
8
8

18
17
15
14

10
17

20







Utah School of Computing 128

17
17

18
18
19
19

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

9
9
8
8

18
17
15
14

8
20
20

10
17






Utah School of Computing 129

17
17

18
18
19
19

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

9
8
8
8

18
17
15
14

20
20

9
10
17






Utah School of Computing 130

17
17

18
18
19
19

94
9
8
8
8

18
17
15
14

10
17

20
20

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9






Utah School of Computing 131

6
17
17

18
18
19
19

94
9
8
8
8

18
17
15
14

10
17

20
20

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9






Utah School of Computing 132

4
6
8

7

17
17

18
18
19
19

9
9
8

18
17
15
14

10
17

20
20

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

8
8







Utah School of Computing Spring 2013

Computer Graphics CS 5600

Utah School of Computing 133

8

4
6
8
7

17
17

18
18
19
19

9
9
8

18
17
15
14

10
17

20
20

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9

8
8







Utah School of Computing 134

8
9

8888

4
6
7

17
17

18
18
19
19

9
9
8

18
17
15
14

10
17

20
20

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9






Utah School of Computing 135

11
8
9

8888

4
6
7

17
17

18
18
19
19

9
9
8

18
17
15
14

10
17

20
20

a-Buffer: Render z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9






Utah School of Computing 136

11
8
9

8888

4
6
7

17
17

18
18
19
19

9
9
8

18
17
15
14

10
17

20
20

a-Buffer: Rendering (done) z10 12 14 16 18 20 221 2 3 4 5 6 7 8 9






Utah School of Computing 137

11
8
9

8888

4
6
7

17
17

18
18
19
19

9
9
8

18
17
15
14

10
17

20
20

a-Buffer: Result z
10 12 14 16 18 20 221 2 3 4 5 6 7 8 9







OpenGL Architecture

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization
Per Fragment

Operations
Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

Utah School of Computing Spring 2013

Computer Graphics CS 5600

Depth Buffering and
Hidden Surface Removal

1
2

4
8

16

1
2

4
8

16
Color
Buffer

Depth
Buffer

Display

Depth Buffering Using OpenGL

Request a depth buffer
glutInitDisplayMode(GLUT_RGB |
GLUT_DOUBLE | GLUT_DEPTH);

Enable depth buffering
glEnable(GL_DEPTH_TEST);

Clear color and depth buffers
glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

Render scene
Swap color buffers

An Updated Program Template

void main(int argc, char** argv)
{

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB |

GLUT_DOUBLE | GLUT_DEPTH);
glutCreateWindow(“Tetrahedron”
);
init();
glutIdleFunc(idle);
glutDisplayFunc(display);
glutMainLoop();

}

An Updated Program Template (cont.)

void init(void)
{

glClearColor(0.0, 0.0, 1.0, 1.0);

glEnable(GL_DEPTH_TEST);
}

void idle(void)
{

glutPostRedisplay();
}

An Updated Program Template (cont.)

void drawScene(void)
{

GLfloat vertices[] = { … };
GLfloat colors[] = { … };
glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

glBegin(GL_TRIANGLE_STRIP);
/* calls to glColor*() and
glVertex*() */
glEnd();
glutSwapBuffers();

}

The End

Visible Surface

Determination

Le
ct

ur
e

S
et

 1
0

144

