Utah School of Computing Spring 2013

Class of Algorithms
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—Most common VSD domain
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Back Face Culling: Object Space Back Face Culling: Object Space
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Back Face Culling Test Back Face Culling: Image Space
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Back Face Culling: Image Space
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Back Face Culling

» Completes the job for convex
polyhedral objects

» Nonconvex objects need additional
processing beyond back face
culling
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Back Face Culling: Examples
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Back Face Culling: Examples

©

Utah School of Computing 10

Back Face Culling: Examples
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Back-Face Culling

« On the surface of a closed manifold, polygons whose
normals point away from the camera are always
occluded:

N

& - ]

— \ Note: backface culling
alone doesn’t solve the
hidden-surface problem!
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Back-Face Culling

» Not rendering backfacing polygons
improves performance
— By how much?

* Reduces by about half the number of polygons
to be considered for each pixel

Spring 2013

Silhouettes

e For Object Space v-n=0

» For Image Space N, = 0
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Occlusion

« For most interesting scenes, some polygons will overlap:

&= |5

« To render the correct image, we need to determine which
polygons occlude which

Painter’'s Algortihm

» How do painter’s solve this?

Painter’'s Algorithm

« Simple approach: render the polygons from back to
front, “painting over” previous polygons:

| = |

— Draw blue, then green, then orange
 Will this work in the general case?

Computer Graphics CS 5600

Painter’'s Algortihm

* How do painter’s solve this?

 Sort the polygons in depth order
» Draw the polygons back-to-front
* QED
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Painter’s Algorithm: Problems

« Intersecting polygons present a problem

« Even non-intersecting polygons can form a
cycle with no valid visibility order:

Analytic Visibility Algorithms

Early visibility algorithms computed the set of visible
polygon fragments directly, then rendered the
fragments to a display:

A

— Now known as analytic visibility algorithms

Analvtic Visibility Algorithms

* What is the minimum worst-case cost of computing
the fragments for a scene composed of n polygons?

* Answer:
0O(n?)

Analytic Visibility Algorithms

» So, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

» We'll talk about two:

— Binary Space-Partition (BSP) Trees
— Warnock’s Algorithm

Binary Space Partition Trees (1979)

« BSP tree: organize all of space (hence
partition) into a binary tree
— Preprocess: overlay a binary tree on objects in the
scene
— Runtime: correctly traversing this tree enumerates
objects from back to front
— ldea: divide space recursively into half-spaces by
choosing splitting planes
« Splitting planes can be arbitrarily oriented
« Notice: nodes are always convex

BSP Trees: Objects

g
2N
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BSP Trees: Objects BSP Trees: Objects
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BSP Trees: Objects BSP Trees: Objects

Rendering BSP Trees Rendering BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (T is a leaf node)
renderObject(T)
else {
if (eye on left side of T->plane)
near = T->left; far = T->right;
else
near = T->right; far = T->left;
renderBSP(far);
renderBSP(near);

¥
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Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees
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Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees
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Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees Rendering BSP Trees

Rendering BSP Trees 3D Polygons: BSP Tree Construction

 Split along the plane containing any polygon

« Classify all polygons into positive or negative
half-space of the plane
— If a polygon intersects plane, split it into two

» Recurse down the negative half-space

» Recurse down the positive half-space

Computer Graphics CS 5600
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Polygons: BSP Tree Traversal

« Query: given a viewpoint, produce an ordered list of
(possibly split) polygons from back to front:

BSPnode: :Draw(Vec3 viewpt)
Classify viewpt: in + or - half-space of node->plane?
/* Call that the “near” half-space */
farchild->draw(viewpt);
render node->polygon; /* always on node->plane */
nearchild->draw(viewpt);

« Intuitively: at each partition, draw the stuff on the
farther side, then the polygon on the partition, then
the stuff on the nearer side

Spring 2013

Discussion: BSP Tree Cons

» No bunnies were harmed in my example

» But what if a splitting plane passes through an
object?
— Split the object; give half to each node:

®-% %

— Worst case: can create up to O(n3) objects!

BSP Demo

« Nice demo:

http://www.symbolcraft.com/graphics/bsp/

Summary: BSP Trees

* Pros:
— Simple, elegant scheme
— Only writes to framebulffer (i.e., painters algorithm)
« Once very popular for video games (but getting less so)
* Widely used in ray-tacing
e Cons:
— Computationally intense preprocess stage restricts
algorithm to static scenes
— Worst-case time to construct tree: O(n3)

— Splitting increases polygon count
« Again, O(n3) worst case

Warnock’s Algorithm (1969)

PIXAR uses a similar scheme

« Elegant scheme based on a powerful general
approach common in graphics: if the situation
is too complex, subdivide
— Start with a root viewport and a list of all primitives
— Then recursively:

« Clip objects to viewport

< If number of objects incident to viewport is zero or one,
visibility is trivial

« Otherwise, subdivide into smaller viewports, distribute
primitives among them, and recurse

Computer Graphics CS 5600

Warnock’s Algorithm
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What is the
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Warnock’s Algorithm Warnock’s Algorithm
* What is the = * What is the —
terminating ' = i B | terminating ' - { -«
condition? ’ ' I ' ' condition? ’ ' I ' '
— One polygon per cell — One polygon per cell
* How to determine the . - * How to determine the . -
correct visible (1) (2) correct visible (1) (2)
surface in this case? *_ : surface in this case? *_ :
B 1 — Cell =single pixel — TH
- - &l - - &l
ashd)s sl ashd)s sl
(3) (5) (3) (5)
Warnock’s Algorithm The Z-Buffer Algorithm
¢ Pros: » Both BSP trees and Warnock’s algorithm

were proposed when memory was expensive
— Example: first 512x512 framebuffer > $50,000!
» Ed Catmull (mid-70s) proposed a radical new

— Very elegant scheme
— Extends to any primitive type

» Cons:
— Hard to embed hierarchical schemes in hardware approach called z-buffering.
— Complex scenes usually have small polygons and » The big idea: resolve visibility independently
high depth complexity at each pixel

+ Thus most screen regions come down to the
single-pixel case

The Z-Buffer Algorithm The Z-Buffer Algorithm
« We know how to rasterize polygons into an * What happens if multiple primitives occupy
image discretized into pixels: the same pixel on the screen? Which is

allowed to paint the pixel?

I ) I
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The Z-Buffer Algorithm

« |dea: retain depth (Z in eye coordinates)
through projection transform
— Use canonical viewing volumes

— Can transform canonical perspective volume into
canonical parallel volume with:

10 0 0 n o0 0 0
” 01 0 0 0 n 0 0
= 1 —Zmin |=
00 -
1+ Zmin 1+ Zmin 00 (n f ) nf
o0 -1 00 1 0
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z-Buffer (Depth Buffer)
Conceptually:

Sort (max ny)
(x.y)

Sort (min ny)
(xy)

Utah School of Computing

The Z-Buffer Algorithm

« Augment framebuffer with Z-buffer or depth
buffer which stores Z value at each pixel
— At frame beginning initialize all pixel depths to «
— When rasterizing, interpolate depth (Z) across
polygon and store in pixel of Z-buffer
— Suppress writing to a pixel if its Z value is more
distant than the Z value already stored there

Interpolating Z

« Edge equations: Z is just another planar parameter:
z=(-D-Ax-By)/C
I1f walking across scanline by (4x)
Zney =2 (AIC)(AX)
— Look familiar?
— Total cost:

+ 1 more parameter to
increment in inner loop

« 3x3 matrix multiply for setup

« Edge walking: just interpolate Z along edges and across
spans

The Z-Buffer Algorithm

e How much memory does the Z-buffer use?

* Does the image rendered depend on the
drawing order?

* Does the time to render the image depend on
the drawing order?

* How does Z-buffer load scale with visible
polygons? With framebuffer resolution?

z-Buffer

Computer Graphics CS 5600
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z-Buffer: Rendering (done) , z-Buffer: REdIt
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< z-Buffer: Pros , < z-Buffer: Cons ,
» Simple algorithm * Memory intensive
» Easy to implement in hardware  Hard to do antialiasing
» Complexity is order N, for polygons  Hard to simulate translucent polygons
* No po|ygon processing order required » Precision issues (scintillating, worse with

« Easily handles polygon interpenetration perspective projection)
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< z-Buffer Algorithm < z-Buffer Algorithm _,

» As a polygon P is scan converted

—Calculate depth z(x,y) at each pixel
(x,y) being processed

—Compare z(x,y) with z-Buffer(x,y)

—Set depth to max (min) values —Replace z-Buffer(x,y) with z(x,y) if
closer to eye

« Initialize buffer

—Set background intensity, color <r,g,b>

Utah School of Computing 101 Utah School of Computing 102
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< z-Buffer Algorithm

 Convert all polygons
» Correct image gets generated when done

» OpenGL.: depth-buffer = z-Buffer

Utah School of Computing 103

Spring 2013

a-Buffer Algorithm _ ,

» Generates linked list for each pixel

» Memory of all contributions allows for
proper handling of many advanced
techniques

« Even more memory intensive
» Widely used for high quality rendering
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a-Buffer Algorithm: Example
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. a-Buffer: Rehder
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a-Buffer: Rendering (done)
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OpenGL Architecture
|

Per Vertex

Polynomial || Operations &

Evaluator Primitive

l Assembly
Display Per Fragment Frame
CPU List Rasterization f— Operations Buffer

Texture

Memory

Pixel
Operations
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Depth Buffering and
Hidden Surface Removal

<8

1
Color ; 1 g ) | Depth
Buffer u 1 < uul\ Buffer

Display

Spring 2013

Depth Buffering Using OpenGL

®Request a depth buffer

@Enable depth buffering

®Clear color and depth buffers

@®Render scene
®Swap color buffers

An Updated Program Template

void main( int argc, char** argv )
{
glutlnit( &argc, argv );

glutlnitDis IayModeg_GLUT RGB |
GLUT_DOUBLE | GLUT_DEPTH ):

)glutCreateWindow( “Tetrahedron”

initQ;

glutldleFunc( idle );
glutDisplayFunc( display );
glutMainLoop();

}

An Updated Program Template (cont.)

void init( void )
glClearColor( 0.0, 0.0, 1.0, 1.0 );

glEnable( GL_DEPTH_TEST );
}

void idle( void )
glutPostRedisplay();

An Updated Program Template (cont.)

void drawScene( void )

GLfloat vertices[] = { ... };
GLfloat colors[] = { ... };

glClear( GL_COLOR_BUFFER BIT |
GL_DEPTH_BUFFER BIT );
glBegin( GL_TRIANGLE_STRIP );

glENdQ);
glutSwapBuffers();
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The End
Visible Surface

Determination

Lecture Set 10
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