General Transformation Commands

e glMatrixMode()
Modelview
Projection
Texture
Which matrix will be modified
Subsequent transformation commands affect the specified matrix.
void glLoadldentity(void);
Sets the currently modifiable matrix to the 4 x 4 identity
matrix.

Usually done when you first switch matrix mode

Transformations

e In OpenGL, transformation are performed
in the opposite order they are called

") glTranslatef(1.0, 1.0, 0.0);
a glRotatef(45.0, 0.0, 0.0, 1.0);
() glScalef(2.0, 2.0, 0.0);

o DrawSquare(0.0, 0.0, 1.0);
(\ glScalef(2.0, 2.0, 0.0);
Q glRotatef(45.0, 0.0, 0.0, 1.0);

() glTranslatef(1.0, 1.0, 0.0);

o Square(0.0, 0.0, 1.0);

Load and Mult Matrices

e void glLoadMatrix{fd}(const TYPE *m);
Sets the sixteen values of the current matrix
to those specified by m.

e void glMultMatrix{fd}(const TYPE *m);

Multiplies the matrix specified by the sixteen
values pointed to by m by the current matrix
and stores the result as the current matrix.

CS 5600

Spring 2013

Object Coordinate System

e Used to place objects in scene
Draw at origin of WCS
Scale and Rotate
Translate to final position

e gIMatrixMode(GL_MODELVIEW)
glScale[fd](x, y, z)
glRotate[fd](angle, X, Y, z)
glTranslate[fd](x, y, z)
gluLookAt(eyex, eyey, eyez, X, Y, z, upX, upy, upz)

Rotation and Scaling

e Rotation and Scaling is done about origin
You always get what you expect
Correct on all parts of model

() glRotatef(45.0, 0.0, 0.0, 1.0);
glScalef(2.0, 2.0, 0.0);
o) glTranslatef(-0.5, -0.5, 0.0);

o DrawSquare(0.0, 0.0, 1.0); ' ‘
L |

OpenGL uses column instead of row vectors

Let C be the current matrix and call
glMultMatrix*(M). After multiplication, the final
matrix is always CM.

Matrices are defined like this (use float m[16]);

Woms me M3
T Mg M0 M4
Pz mT] ms
Frq Mg M2 Mg

CS 5600

Stack Operations

e glPushMatrix

e glPopMatrix

Relative Transformation

A better (and easier) way:

(2) Relative transformation: Specify the transformation
for each object relative to its parent

Spring 2013

Hierarchical Representation - Scene Graph

e We can describe the object dependency
using a tree structure
The position and orientation of

Root node
an object can be affected
by its parent, grand-parent,
grand-grand-parent ... nodes

-
]
L

Leaf node | Hammer

This hierarchical representation
is referred to as Scene Graph

Transformations

e Two ways to specify transformations

e (1) Each part of the object is transformed
independently relative to the origin
Not the best way!

Translate the base by (5,0,0);

Translate the lower arm by (5,00);
Translate the upper arm by (S.Oy\ T_/

Object Dependency

= A graphical scene often consists of many
small objects

= The attributes of an object (positions,
orientations) can depend on others

AROBOT HAMMER! hammer
upper arm ~
lower arm

base
Spring 2013

Relative Transformation

Relative transformation: Specify the transformation for
each object relative to its parent

Translate base and
endants by (5,0,0);

Spring 2013

CS 5600

Relative Transformation (2)

Step 2: Rotate the lower arm and all its descendants
relative to its local y axis by -90 degree

Do it in OpenGL

e Translate base and all its descendants by (5,0,0)

e Rotate the lower arm and its descendants by -90
degree about the locally

|

glN

Upper arm
Spring 2013 Hammer

Do this ...

e Base and everything — translate (5,0,0)
e Left hammer — rotate 75 degree about the local y
e Right hammer — rotate -75 degree about the local y

Spring 2013

Relative Transformation (3)

e Represent relative transformations
using scene graph

Translate (5,0,0)
Rotate (-90) about its local y

Upper arm
Apply all the way
down

Ham! Apply all the way
down

A more complicated example

e How about this model?
Scene Graph?

left hammer Right hammer

Lower arm Lower arm

.

(left hammer) (right hammer)

'ﬁl—/ﬁflpth-ﬁrst traversal

N~
* Program this transformation by depth-first traversal

er arm Upper arm

(left hammer) (right hammer)
i First Traversal

CS 5600

How about this?

Lower arm

(left hammer) (right hammer)

Undo the previous transformation(s)

e Need to save the modelview matrix right after we
draw base

Undo the previous transformation
means we want to restore the
Modelview Matrix M to what

it was here

i.e., save M right here

And then restore the saved
Modelview Matrix

Push and Pop Matrix St@

= A simple OpenGL routine:

push

Spring 2013

Something is wrong

= What's wrong? — We want to transform the rig
hammer relative to the base, not to the left hammer

We should undo the

left hammer transformation
before we transform the right
hammer

Need to undo this
first

OpenGL Matrix Stack

= We can use OpenGL Matrix Stack to perform matrix

save and restore . .
* Store the current modelview matri;
- Make a copy of the current matrix
and push into OpenGL Matrix Stack

call glPushMatrix()

- continue to modify the current
matrix

* Restore the saved Matrix

- Pop the top of the Matrix and
copy it back to the current
Modelview Matrix:

Call glPopMatrix()

Push and Pop Matrix Stack

= Nested push and pop operations
Modelview matrix (M)

Hierarchical Transformations

For geometries with an
implicit ierarchy we wish
to associate local frames —

Spring 2013

Hierarchical Transformations

Hierarchical transformation allow

lependent control over sub-parts of an assembly

with sub-objects in the N
assembly. A :
(™)

* Parent-child frames are H)
related via a [g
transformation. AR T

+ Transformation linkage is (e g)

; Jmes
described by a free:

+ Each node has its own
local co-ordinate system.

v v
.
translate bas=e rotate jointl
v
.
rotate joint2 complex hierarchical transformation

OpenGL* Implementation

Hierarchical Transformations

The previous example had simple one-to-one
parent-child linkages.

In general there may be many child frames derived
from a single parent frame.
we need some mechanism to remember the parent
frame and return to it when creating new children.
OpenGL provide a matrix stack for just this
purpose:

- glPushMatrix () saves the CTM

- glPopMatrix () returns to the last saved CTM

CS 5600

Hierarchical Transformations

Each finger is a child of the parent (wrist)
= independent control over the orientation of the fingers relative to the wrist

Hierarchical Transformations

Basc

i

)
. w s
= A - Anm

|
| .
—., n t

> x glTranslatef (0, -fy3, 0)

glRotatef (-upperfingerl_orientation) ;
glTranslatef (0, -fy2 :
glTranslatef (0, -fyl, 0) ;
glRotatef (-lowerfingerl orientation) ;
glTranslatef (xf, -fy0, 0) ;

7/ do Finger 2

Spring 2013

H
.x
. ww \ Save the matrix state
a1 : =
| $ 2
- X anslatef (0, -fy3, 0) ;
, _upperfi

ger1_orieg
2

/7 do Finger 2

.| .
|
—, n Rotat £ t
| ERE glPopMatrix (}
gliushMateix () :
fhe, by bz glPopMateix () :

glPushMatrix () :

glPopMatrix ()

CS 5600

