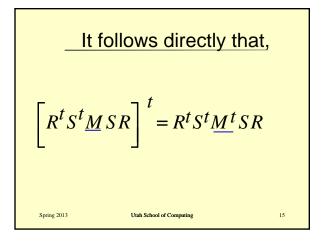


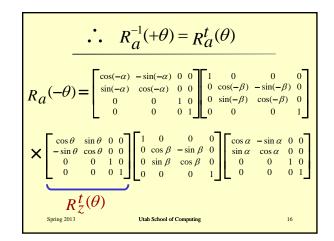
$$\begin{split} & \text{Similarly}, R_a^{-1}(+\theta) = R_a(-\theta), \text{so} \\ & R_a(-\theta) = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0 & 0\\ \sin(-\alpha) & \cos(-\alpha) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \cos(-\beta) & -\sin(-\beta) & 0\\ 0 & \sin(-\beta) & \cos(-\beta) & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & \times \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0\\ -\sin\theta & \cos\theta & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \cos\beta & -\sin\beta & 0\\ 0 & \sin\beta & \cos\beta & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 & 0\\ \sin\alpha & \cos\alpha & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & R_z(-\theta) \end{split}$$

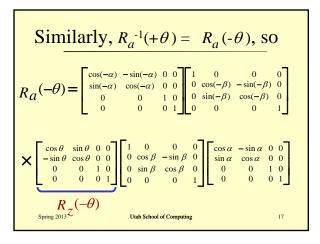
$$\mathbf{Recall, } [AB]^{t} = B^{t}A^{t}$$
Consequently, for $A = R^{t}\underline{M}R$,
$$A^{t} = R^{t}\underline{M}^{t}R \quad \text{because,}$$

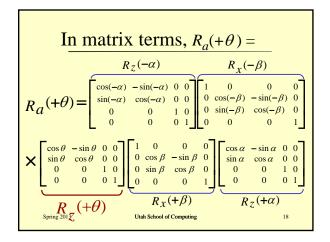
$$\left[R^{t}(MR)\right]^{t} = \left[M^{\cdot}R\right]^{t}\left[R^{t}\right]^{t}$$

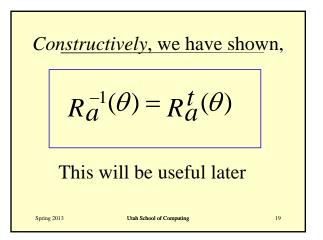
$$= R^{t}M^{t}R$$

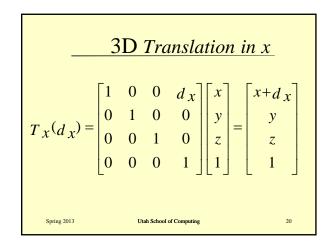


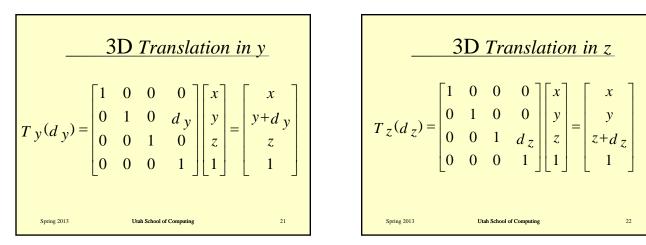


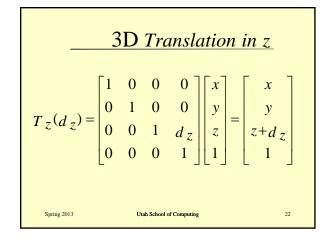


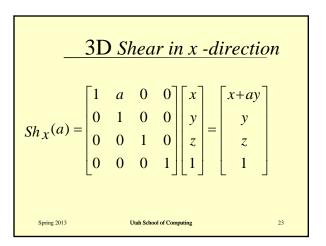


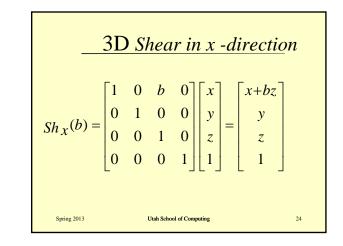


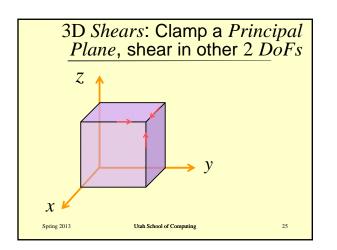


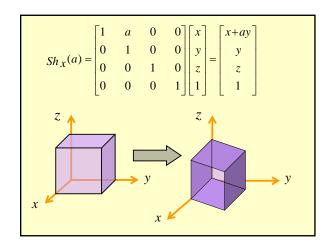




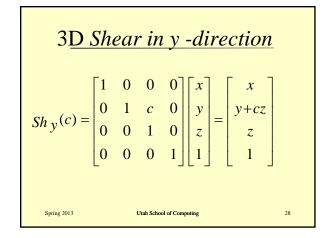


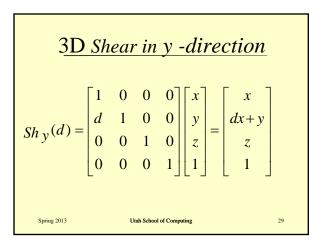


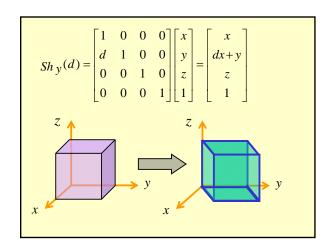


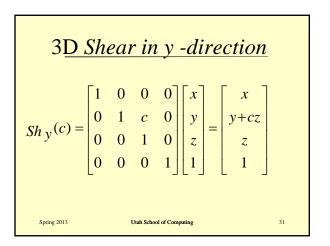


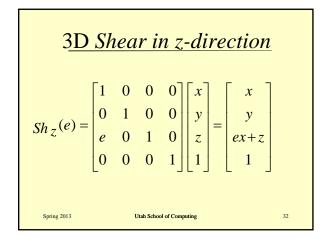
<u>3D Shear in x -direction</u>									
$Sh_{\chi}(b) =$	「1 0 0	0 1 0 0	<i>b</i> 0 1 0	0 0 0 1	$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$	=	$\begin{bmatrix} x+bz \\ y \\ z \\ 1 \end{bmatrix}$		
Spring 2013 Utah School of Computing								27	

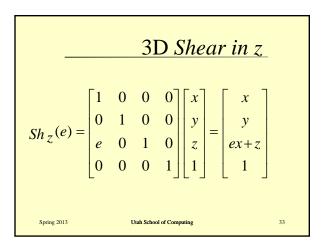


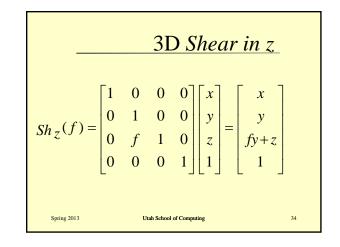


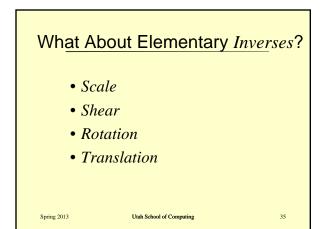


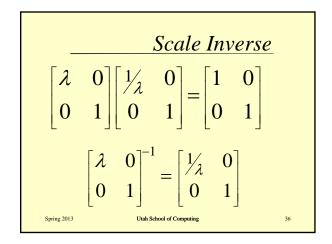


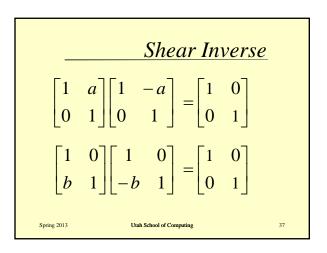


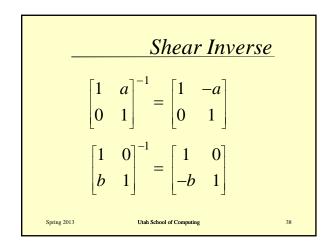


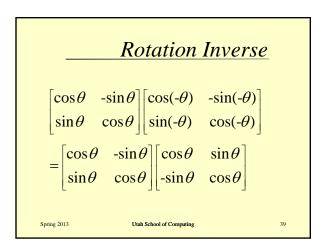


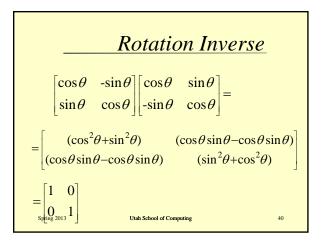


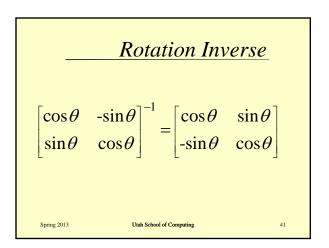


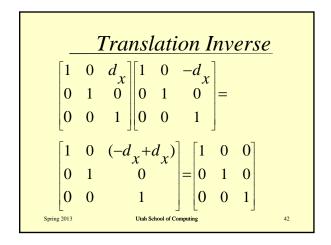


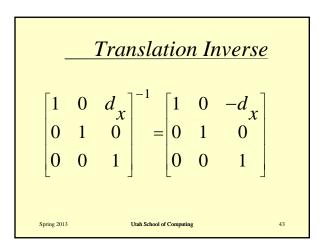


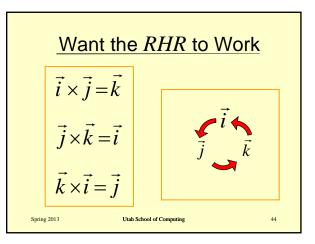


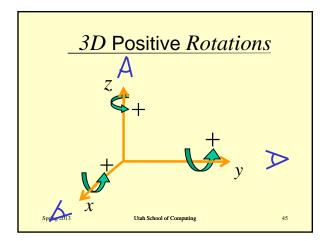


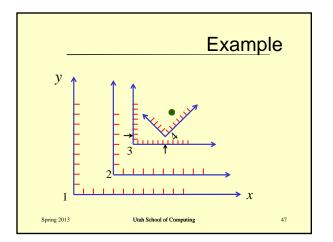


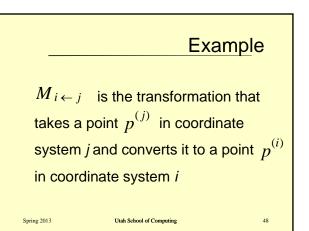




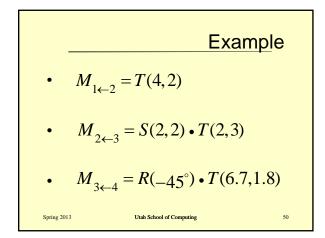


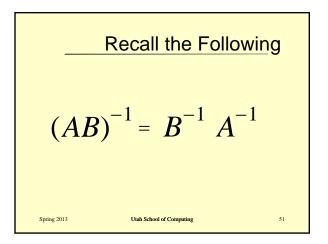






	Example	
•	$p^{(i)} = M_{i \leftarrow j} p^{(j)}$	
•	$p^{(j)} = M_{j \leftarrow k} p^{(k)}$	
•	$M_{i \leftarrow k} = M_{i \leftarrow j} M_{j \leftarrow k}$	
Spring 2	013 Utah School of Computing 49	





Since
$$M_{i \leftarrow j}^{-1} = M_{j \leftarrow i}$$

• $M_{2 \leftarrow 1} = T(-4, -2)$
• $M_{3 \leftarrow 2} = T(-2, -3) \cdot S(\frac{1}{2}, \frac{1}{2})$
• $M_{4 \leftarrow 3} = T(-6.7, -1.8) \cdot R(+45^{\circ})$

