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Arbitrary 3D Rotation

• What is its inverse?

• What is its transpose?

• Can we constructively elucidate this 

relationship?
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Rotate + about axis a:Ra(+ )



 a

x

z

y
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First, Rotate about z by  : Rz( )





a Now in the 

(y-z)-plane

x

z

y
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Then Rotate about x by + : Rx( )

x

z

y


Rotate in the 

(y-z)-plane



a
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Now, + Rotation about z-axis: Rz(+ )

x

z

y

a Now aligned 
with z-axis



6
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Then rotate about x by - : Rx(- )



Rotate again in

the (y-z)-plane
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y

a


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Now, + Rotation about z by  : Rz( )

Now to original 
position of a


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x

z

y


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We Effected + rotation about 
Arbitrary axis a:Ra(+ )


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z

y
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We Effected + rotation about 
Arbitrary axis a:Ra(+ )

)()()(   RRR z xa
)( Rz

)()(   RRx z
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Rotation about Arbitrary Axis

• Rotation about a-axis effected by 
(nonunique) composition of 5 
elementary rotations

• We show arbitrary rotation as  
succession of 5 rotations about 
principal axes 
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Similarly, Ra
-1(+ ) = Ra (- ), so
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Recall, [AB]t = BtAt

RtMtRtA  

       tttt RRM
t

RMR    .

Consequently, for   , RMtRA 

because,

RMR tt
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  RStMtStR
t

RSMtStR 





It follows directly that,
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Similarly, Ra
-1(+ ) = Ra (- ), so
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)()(  1  Rt
aRa 

Constructively, we have shown,

This will be useful later
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3D Translation in x
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3D Translation in y
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3D Translation in z
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3D Shear in x -direction
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3D Shear in x -direction
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3D Shears: Clamp a Principal 
Plane, shear in other 2 DoFs
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3D Shear in x -direction
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3D Shear in y -direction
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3D Shear in y -direction
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3D Shear in y -direction
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3D Shear in z-direction
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3D Shear in z
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3D Shear in z
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What About Elementary Inverses?

• Scale

• Shear

• Rotation

• Translation
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Scale Inverse
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Shear Inverse
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Shear Inverse
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Rotation Inverse
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Rotation Inverse
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Rotation Inverse








































cossin-

sincos

cossin

sin-cos
1
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Translation Inverse























































































10

010

01

10

010

01

10

010

01

10

010

01

0

0

0

)(

00

xdxd

xdxd
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Translation Inverse







































 


10

010

01

10

010

01

00

1

xdxd
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Want the RHR to Work

jik

ikj

kji













    

        j k


i

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3D Positive Rotations

x

z

y





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Transf’s as Change in Coordinate Sys

• Useful in many situations

• Use most natural coordination 

system locally

• Tie things together in a global 

system
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Example

x

y

1

2

3
4
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Example

is the transformation that 

takes a point          in coordinate 

system j and converts it to a point          

in coordinate system i

M ji 

p j)(

p i)(
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Example

•

•

•

pMp
ji

ji

)()(  

pMp
kj

kj

)()(  

MMM kjki ji  

Spring 2013 Utah School of ComputingUtah School of Computing 50

Example

•

•

•

)2,4(
21

TM 

)3,2()2,2(
32

TSM  

)8.1,7.6()45(
43

TRM   
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Recall the Following

ABAB 111)( 



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Since 

•

•

•

)2,4(
12

 TM

)
2
1,

2
1()3,2(23 STM  

MM ijji 



1

)45()8.1,7.6(34
  RTM
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Example

x

y

1

2

3
4

10

8

6

6

8

6

4

2
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Change of Coordinate System

• Describe the old coordinate system 
in terms of the new one.

x’
y

x

y’
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Change of Coordinate System

Move to the new coordinate system and 
describe the one old.  

x

y 

x

y Old is a 
negative 
rotation of 
the new.


