Utah School of Computing Spring 2013

Transformations and Matrices

* Transformations are functions

Transformations | . )
* Matrices are function

representations
CS5600 Computer Graphics » Matrices represent linear transf’s
From: Rich Riesenfeld * {2x2 Matrices} = {2D Linear Transf's}
Spring 2013
Rocket What is a 2D Linear Transf ?
? :
How to form a rocket A Recall from Linear Algebra:
Def : T(ax+y)=aT(X)+T(y),

P N for scalar a and vectors X and y.

How to move a rocket?

Look at a Diagram Scale in X by 2: Szx(V )

0 Scale in X, by 2, say:

I . ]l+ ] (Z(XO +%), Yo + y1)=(2x0 +2%, Yo+ 1)

—_—
T() ar (X)+bT (y) =(2%0, ¥o) +(2x, 1)
Cax, b L0

T(@X)+T(by)
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Example:

Scale in X by Szx(v)

What is the graphical view?

Spring 2013

Scale in X by 2: SZX(V)

y

) y) =, (2%, 31)

(Xo, yo)q ‘(ZXO' yO)
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(2x0+2x1, Yo+ V4)

2 (2%, 1)
/
’ (2x0+ 2%, Yo+ v1)
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(2(X0 +x0: Yot yl)

y

(%0, v1) (Xo+ X1, Yot Y1

2(Xg+x0), Yot yl)

X

(X0 Yo)
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(2(x0+x0), Yo+ Y1)

((Xo+ X:L)v Yot yl)

P

X

Spring 2013 Utah School of Computing
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Summary on Scale

« “Scale then add,” is same as
« “Add then scale”

-

Same
results

Spring 2013 Utah Scf omputing 12
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Matrix Representation of Szy(V)

Matrix Representation
Scale iny by 2: Szy(V)

o ] ER{ MR
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Matrix Representation S,(v) Matrix Form of Same
<+
Overall Scale by 2: Sy(v) {2 O}|:XO+X1} [Z(XoJleq
0 1YotV - Yot V1
|:2 O:||:X:| |:2X:| 2|:X:| Add x and y, then scale
= = 2%y +2X%
0 2 2 _ { : }
y y y Yo+,
%/—/
Scale x and y, then add

Rotate by &

What about Rotation?

Is it linear?

Spring 2013
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Rotate by 4. 1% Quadrant

y (cos@,sin0)

/|
/
/ .
/ sin @
o
/
& \ > X
— 1,0
cosd
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Rotate by #. 15t Quadrant

(1,0) = (cos@,sinb)

Spring 2013 Utah School of Computing 20

Rotate by ¢: 2" Quadrant
y

(0.1)

0
(1,0
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Rotate by #: 2" Quadrant
y

401

v\
cosd { }g/ \\@—
>

%/_J
sin@
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Rotate by ¢: 2" Quadrant

(0,1) = (-sin@,cosH)

Spring 2013 Utah School of Computing
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Summary of Rotation by &

(1,0) = (cos @,sin H)
(0,1) = (-sin@,cosH)

Spring 2013 Utah School of Computing
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Summary (Column Form) Using Matrix Notation

1 cosé@ {cos@ -siné | [cosd

= . sind cosd sin@
0 siné - .
0 ing {cose -sin@][0] [-sin 9}

- Sln - =

— ] sing cos® ||1]| |cosd

1 cosé (Note that unit vectors simply copy columns)

General Rotation by & Matrix

sin@

Spring 2013

{cos&

-sing || X | | xcos@-ysing
cosd || y| | xsind+ ycosd

Utah School of Computing 27

|

What do the off diagonal
elements do?

Off Diagonal Elements Example 1
_ e o 1 0]|x
1 a][x]_ x+ay} y T(X,y){o_4 J {y}
0 1|yl [ vV 1) X
1 0] [x] [ x {0-4“)’}
b 1] _y_:_bx+ y}

- U St ofCompng 2 050! (@800t ot compting £ g

Computer Graphics CS5600




Utah School of Computing

Spring 2013

Example 1
y wray T(XYy)=
X
09
|:0.4X + y}
1,0.4)
$(09@) Utah School of Computing X 2
Example 2
X+0.6y
’ T(x,y) { }
y

(0]

Example 1
y T (X’ y) =
X
0.4x+y
s409@): (&p@c 00l of Computing X 3t
Example 2
[1 0.6][x
T(x,y)= 0 il } }
y i Ly
o " _ X+0.6y
.E _ y —
00) (10) X
Example 2
X+0.6
y T(XYy)= { y}
y
O (06,1 (16,1
ngnggLa Gﬁhqghm)l of Computing X 35

sgr(u)r;g%m (1’ Og&ah School of Computing X 34
Summary
Shear in x: o
X X+a
101yl LY
Shear iny: I
0] ]|x X
b 1||y]| [bx+y

Spring 2013

Utah School of Computing

36
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Double Shear: not commutative!

1 all1 o'_ al
0 b 1 b 1

1 a 1 a
1

on/kF

i

Spring 2013 Utah School of Computing 37
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Translation in X

1 0 d,||x X+d,
01 O0jlyl=] VY
00 1|1 1

Spring 2013 Utah School of Computing 39

“LaZV 111

1 0 0]lx X
0 1 Ofly|=|Y
0 0 1|1 1

Translation in y
1 0 0 (x X
0 1 d,||y|=|y+d,
0 0 1|1 1

Spring 2013 Utah School of Computing 40

Homogeneous Coordinates

Spring 2013 Utah School of Computing 4

Computer Graphics CS5600

Homogeneous Coordinates

AX| | X

Ayl=ly| < {X} , for 10
y

A 1

Spring 2013 Utah School of Computing 42
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Homogeneous Coordinates
For A#0,

1 0 0 ||x X AX
AX
01 0 |yl=|lY|=|4Y|<
Ay
00 %1 v 1

Homogeneous term affects overall scaling

Spring 2013 Utah School of Computing 43

Spring 2013

Homogeneous Coordinates

An infinite number of points correspond to (x,y,1).

They constitute the whole line (wx,wy,w).

W WX, WY, W)

/ w=1
T Oy D) S 0aiw, wylw, wiw)
K y

Spring 2013 Utah School of Computing 44

What does a shear do?

W (WXWy W) (wx,wy’,w)

\ w=1
+// (xy'D)
Translation in w=1 |

Spring 2013 Utah School of Computing 45

Using Homogeneous Coord’s

e Shear in 3D
« Effects translation in 2D

« We have used a linear
transformation (shear) in 3D to
effect a nonlinear transformation
(translation) in 2D

Spring 2013 Utah School of Computing 46

Translation by d: T(X) = x+d

T@+V) = (@+V)+d

T@+TW) = (@+d)+(V+d)
= G+V+2d
= T(G+V)+d
TU+V) = TU)+T(V)

Spring 2013 Utah School of Computing 47
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Lots Going On Here!

We've got Affine
Transformations:

Linear + Translation

Spring 2013 Utah School of Computing 48
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Compound Transformations

« Build up compound transformations
by concatenating elementary ones
» Use for complicated motion

» Use for complicated modeling

Spring 2013 Utah School of Computing 49

Spring 2013

Elementary Transformations

* Scale: S3,(V), $;,(V)
« Rotate: Rg (V) Rg (V)
- Translate: Ty (v), Tg, (V)
« Shear: Sh7, (V). Shy, (V)

* Reflect: Rf(V), Rf,(V)

Spring 2013 Utah School of Computing 50

Refection about y-axis

-1 0][1] [-1
0 1//0| |0
X< —X

Spring 2013 Utah School of Computing 51

Reflection about y-axis
y

<G>
(=X, Yy <=1 (X,Y)
\ /

\ /

A4
X

4 L4 >
(-1,0) << = (1,0)
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Reflection about x-axis

1 o][o] [o
0 -1]/|1] |-1
yeo-y

Spring 2013 Utah School of Computing 53

Computer Graphics CS5600

Reflection about x-axis
y

10D _xy)

e
T d
e
&« X
~
~

S\
v (0'_1) (X,—y)
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Is Reflection “Elementary”?

* Can we effect reflection in an
elementary way?

 (More elementary means
scale, shear, rotation,
translation.)

Spring 2013 Utah School of Computing 3

Spring 2013

Reflection = Scale (-1)

Ex: Advance clock hands

Spring 2013 Utah School of Computing 57

Ex: Advance clock hands: 30mins

y

What to do?

Spring 2013 Utah School of Computing 58

Ex: Advance clock hands: 30mins

y

Rotate hr hand by ?
Rotate min hand by -180

Spring 2013 Utah School of Computing 59

Computer Graphics CS5600

Ex: Advance clock hands: 30mins

y

Rotate hr hand by -15
Rotate min hand by -180

Spring 2015 Utah School of Computing 60
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Ex: Advance clock hands: 30mins

y

Rotate hr hand by -15
Rotate min hand by -180

Spring 2013 Utah School of Computing 61

Spring 2013

Ex: Advance clock hands: 30mins

y

Rotate hr hand by -15
Rotate min hand by -180
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Ex: Advance clock hands: 30mins

y

Rotate hr hand by -15
Rotate min hand by -180

Spring 2013 Utah School of Computing 63

Ex: Advance clock hands: 30mins

y

Spring 2013 Utah School of Computing 64

Ex: Advance clock hands

~

Spring 201 Utah School of Computing 65

Computer Graphics CS5600

Ex: Advance clock hands

7~

Spring 20 Utah School of Computing 66
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Ex: Advance clock hands Ex: Advance clock hands
y
X
|
Spring 2013 Utah School of Computing 67 Spring ZOJv’ Utah School of Computing 68
Ex: Advance clock hands Clock Transformations
y .
* Translate to Origin
* Move hand with rotation
* Move hand back to clock
L * Do other hand
X
Clock Transformations Clock Transformations
_ S 1 0 allcost) —sint) 0][1 0 -al[x
Ts=T(a,b)R({t)T(-a-b) 0 1 b||sin®) cost) O/|0 1 —b||y
To=T(a,b) R(12*t) T (-a,~b) 00 1| 0 0 1/|0 0 1|1
Translate Back Rotate About Origin Translate to Origi’n i
where t=_-15° o~
1“

Computer Graphics CS5600 12
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Rocket revisited

Spring 2013

A

AEA\

Utah School of Computing 73

Spring 2013

Rocket revisited

v

How to move a rocket?

Spring 2013 Utah School of Computing 74

Map: [a,b] = [0,1]

Map: [a,b] = [0,1]

* Translate to Origin
[a,b] > [a-a,b—a]=[0,b-a]

* Map X to translated interval
X—> X—a

Spring 2013 Utah School of Computing 76

X X
— - = 1
a b 0 1
Spring 2013 Utah School of Computing 75
Map:[a,b] = [0,1]
B B [g]
b-a b-a
0 1 040 1 0llyl=| vV
0 0 1 0 0 111 1
J \ J
Y Y
sdts|  TxCa)
. X b—a X

Computer Graphics CS5600

Map:[a,b] = [0,1]

* Normalize the interval

[0,b-a]- bfa[a_a,b_a]z[o,l]

* Map X to normalized interval
x _ X—8
b—a

Spring 2013 Utah School of Computing 78
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Just Look at Y™

&)

1

X

Sx(pra) T

This is a homogeneous form for 1D

Spring 2013 Utah School of Computing 79

Map: [a,b] = [-1,1]

—— wp T
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Map: [a,b] = [-1,1]

 Translate center of interval to origin

X X
2

* Normalize interval to [-1,1]
[ a+b} 2 [ a+b}
X— - —— | X-
2 b-a 2

Spring 2013 Utah School of Computing 81

Map: [a,b] = [c,d]

* First map [a,b] to [0,1]
—(We already did this)

* Then map [0,1] to [c,d]

Spring 2013 Utah School of Computing 82

Map: [0,1] = [c,d ]

» Scale [0,1] by [c,d]
» Then translate by c
e That s, in 1D homogeneous form:

b g e

|

Spring 2013 Utah School of Computing 83

All Together: Map: [a,b] = [c,d ]

s % 96 o

o 6 e <

Spring 2013 Utah School of Computing 84
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Now Map Rectangles Transformation in x and y
(umax’vmax)
1 0 umin _Zx 0 0 1 0 _Xmin X
01 vl 0 A, Off0 1 -y |y
ﬁ 00 1]lo o 1o 0o 1 |1
(umin’vmin) _ umax_umin} _ Vmax_Vmin
Where, AX Xmﬁx_xmi" ’ ﬂ/y ymax_ymin
This is Viewport Transformation Space Example
» Good for mapping objects from one
coordinate system to another
* This is what we do with windows
and viewports
Spring 2013 Utah School of Computing 8 Spring 201 Utah Schogl of Computing 88
Space Example 3D Transformations

scale Sy (4), §(4), §,(4)
Rotate R (6), Ry(g), R, (0)
translate T x(d), Ty (d), T 7(d)
shear  Shy (d), sh, (d), sh,(d)

Spring 2013 Utah School of Computing 89 Spring 2013 Utah School of Computing 90
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3D Scale in x

A 0 0 0l[x] [ix
101 0 Ofly| |V
SxTlo 0 1 ollz|7] z
0 0 0 1(/1] |1
3D Scale inz
1 0 0 O0f|x X
0 1 0 O}y y
Z«: =]
SZ()oo;LOz Az
0 0 0 11| |1

Spring 2013 Utah School of Computing 94

3D Scale in x
A 0 0 O]
01 00O
1) =
SxW=g 01 0
0 0 0 1]
3D Scaleiny
1 0 0 0]|x X
0 4 0 Of|y Ay
1) = _
SYW=ly o 1 ollz|7| 2
0 0 0 1([1 1
Overall 3D Scale
1 0 0 0][x X
0 1 0 O
S(A) = yi_| VY
0 0 1 0 Z Z
0 0 0 (Y1l |

Spring 2013 Utah School of Computing 9%5
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Overall 3D Scale

Same in X,Y and Z:

X AX
1 AX
y _ y = |ay
Z Az
Az
)] |1

Spring 2013 Utah School of Computing 9%
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Positive Rotation in 3D ?

e Sitat+00 end of given axis
* Look at Origin

* CC Rotation is in Positive direction

Spring 2013 Utah School of Computing 9
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3D Positive Rotations

A
Z¢+

ﬁwa Utah School of Computing 98

3D Rotation about z-axis by 0

We have already done this:

[cos® —sind 0 0O]x
sin@ cosd 0 Of|y

0) =
RzO=| g g 1 ol
0 0 0 1|1
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3D Rotation about x-axis by 6
Z

>

(0,01
/, ﬂ
/

%\ /
g |
I[N\

y

100

01,0)
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3D Rotation about x-axis by @

1 0 0 0| x
0 cos@ -singd O]y

) =
Rx(©) 0 sin® cosd 0}z
0 0 0 111

Spring 2013 Utah School of Computing 101
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3D Rotation about y-axis by @

“%0,0,1)
A 3
/, N
X ,," < ~
7 (10,0) \f,
./
Spring 2013 S \mal‘ ﬁuf Computing 162
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3D Rotation about y-axis by Elementary Transformations
* Scale: slx(v), S/ly(v)
[ cos® 0 sind O]fx] Rotate R, (V). R, (V)
@ © 1 0 ofy R AT TS
RY¥IZ| sino 0 coso 0]z s Translate: Ty (v), Ta (V)
0o 0 0 1|1 » Shear: sh, (v), Shy (v)
* Reflect: RE(V), Rf,(V)
The End

Transformations |

Lecture Set 5
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