
Utah School of Computing Spring 2013

Computer Graphics CS5600

Scan Conversion

CS5600 Computer Graphics

Spring 2013Le
ct

ur
e

S
et

 4

Review

• Line rasterization
– Basic Incremental Algorithm
– Digital Differential Analyzer

• Rather than solve line equation at each pixel,
use evaluation of line from previous pixel and
slope to approximate line equation

– Bresenham
• Use integer arithmetic and midpoint

discriminator to test between two possible
pixels (over vs. over-and-up)

Rasterizing Polygons
• In interactive graphics, polygons rule the world

• Two main reasons:
– Lowest common denominator for surfaces

• Can represent any surface with arbitrary accuracy

• Splines, mathematical functions, volumetric isosurfaces…

– Mathematical simplicity lends itself to simple,
regular rendering algorithms

• Like those we’re about to discuss…

• Such algorithms embed well in hardware

Rasterizing Polygons
• Triangle is the minimal unit of a polygon

– All polygons can be broken up into triangles
• Convex, concave, complex

– Triangles are guaranteed to be:
• Planar

• Convex

– What exactly does it mean to be convex?

Convex Shapes

• A two-dimensional shape is convex if and only if
every line segment connecting two points on the
boundary is entirely contained.

Triangularization

• Convex polygons easily
triangulated

• Concave polygons
present a challenge

Utah School of Computing Spring 2013

Computer Graphics CS5600

Rasterizing Triangles

• Interactive graphics hardware
sometimes uses edge walking or edge
equation techniques for rasterizing
triangles

• Interactive graphics hardware more
commonly uses barycentric coordinates
for rasterizing triangles

Scan Conversion

• In scanline rendering surfaces are projected on the
screen and space filling ‘rasterizing’ algorithms are
used to fill in the color.

• Color values from light are approximated.

Triangle Rasterization Issues

• Exactly which pixels should be lit?

• A: Those pixels inside the triangle edges

• What about pixels exactly on the edge?
– Draw them: order of triangles matters (it shouldn’t)

– Don’t draw them: gaps possible between triangles

• We need a consistent (if arbitrary) rule
– Example: draw pixels on left and bottom edge, but

not on right or top edge

Triangle Rasterization Issues

• Sliver

• Moving Slivers

Triangle Rasterization Issues Triangle Rasterization Issues
• Shared Edge Ordering

Utah School of Computing Spring 2013

Computer Graphics CS5600

Utah School of Computing Spring 2013

Computer Graphics CS5600

How do we know if it’s ‘inside’?

Edge Equations

• An edge equation is simply the equation of
the line defining that edge
– Q: What is the implicit equation of a line?

– A: Ax + By + C = 0

– Q: Given a point (x,y), what does plugging x & y
into this equation tell us?

– A: Whether the point is:
• On the line: Ax + By + C = 0

• “Above” the line: Ax + By + C > 0

• “Below” the line: Ax + By + C < 0

Edge Equations
• Edge equations thus define two half-spaces:

Edge Equations
• And a triangle can be defined as the

intersection of three positive half-spaces:

A1x + B1y + C1
< 0

A
2 x + B

2 y + C
2 < 0

A 3
x

+
B 3

y
+

C 3
<

0

A1x + B1y + C1
> 0

A 3
x

+
B 3

y
+

C 3
>

0 A
2 x + B

2 y + C
2 > 0

Edge Equations

• So…simply turn on those pixels for which all edge
equations evaluate to > 0:

+
++

-

-
-

Utah School of Computing Spring 2013

Computer Graphics CS5600

Sweep-line

• Basic idea:
– Draw edges vertically

• Interpolate colors up/down edges

– Fill in horizontal spans for each scanline
• At each scanline, interpolate

edge colors across span

Sweep-line: Notes

• Order three triangle vertices in x and y
– Find middle point in y dimension and compute if it is to the

left or right of polygon. Also could be flat top or flat bottom
triangle

• We know where left and right edges are.
– Proceed from top scanline downwards (and other way too)

– Fill each span

– Until bottom/top vertex is reached

• Advantage: can be made very fast

• Disadvantages:
– Lots of finicky special cases

Sweep line: Disadvantages

• Fractional offsets:

• Be careful when interpolating color values!

• Beware of gaps between adjacent edges

• Beware of duplicating shared edges

Utah School of Computing Spring 2013

Computer Graphics CS5600

Polygon Scan Conversion

Intersection Points

Other points in the span

Utah School of Computing Spring 2013

Computer Graphics CS5600

Determining Inside vs. Outside

• Use the odd-parity rule
– Set parity even initially

– Invert parity at each intersection point

– Draw pixels when parity is odd, do not draw when it is even

• How do we count vertices, i.e., do we invert parity
when a vertex falls exactly on a scan line?

Vertices and Parity

• How do we count the intersecting vertex in
the parity computation?

Scan line

?????

Vertices and Parity

• We need to either count it 0 times, or 2 times to keep parity
correct.

• What about:

• We need to count this
vertex once

Scan line

?????

Vertices and Parity

• If we count a vertex as one intersection, the second
polygon gets drawn correctly, but the first does not.

• If we count a vertex as zero or two intersections, the
first polygon gets drawn correctly, but the second
does not.

• How do we handle this?
– Count only vertices that are the ymin vertex for that line

Vertices and Parity

• Both cases now work correctly

Horizontal Edges
• How do we deal with horizontal edges?

Don’t count their vertices in the parity calculation!

???

Utah School of Computing Spring 2013

Computer Graphics CS5600

Top Spans of Polygons

• Effect of only counting ymin :
– Top spans of polygons are not drawn

– If two polygons share this edge,
it is not a problem.

– What about if this is the only polygon with that edge?

Shared Polygon Edges

• What if two polygons share an edge?

• Solution:
– Span is closed on left and

open on right (xmin  x < xmax)

– Scan lines closed on bottom and

open on top (ymin  y < ymax)

Draw  Last polygon wins

Orange last Blue last

General Pixel Ownership Rule

• Half-plane rule:
A boundary pixel (whose center falls exactly on an edge) is not
considered part of a primitive if the half plane formed by the
edge and containing the primitive lies to the left or below the
edge.

• Consequences:
– Spans are missing the right-most pixel

– Each polygon is missing its top-most span

Shared edge

Applies to arbitrary polygons
as well as to rectangles....

General Polygon Rasterization

• Consider the following polygon:

• How do we know whether a given pixel on the
scanline is inside or outside the polygon?

A

B

C

D

E

F

Polygon Rasterization

• Inside-Outside Points

Polygon Rasterization

• Inside-Outside Points

Utah School of Computing Spring 2013

Computer Graphics CS5600

General Polygon Rasterization
• Basic idea: use a parity test

for each scanline

edgeCnt = 0;

for each pixel on scanline (l to r)

if (oldpixel->newpixel crosses edge)

edgeCnt ++;

// draw the pixel if edgeCnt odd

if (edgeCnt % 2)

setPixel(pixel);

General Polygon Rasterization

• Count your vertices carefully

B

C
D

E

FG

I H

J

A

Faster Polygon Rasterization

• How can we optimize the code?
for each scanline

edgeCnt = 0;

for each pixel on scanline (l to r)

if (oldpixel->newpixel crosses edge)

edgeCnt ++;

// draw the pixel if edgeCnt odd

if (edgeCnt % 2)

setPixel(pixel);

• Big cost: testing pixels against each edge

• Solution: active edge table (AET)

Active Edge Table

• Idea:
– Edges intersecting a given scanline are likely to intersect the

next scanline

– The order of edge intersections doesn’t change much from
scanline to scanline

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xat y min,slope

Utah School of Computing Spring 2013

Computer Graphics CS5600

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xat y min,slope

AB:

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xat y min,slope

AB: 3 7 -5/2
CB:

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xat y min,slope

AB: 3 7 -5/2
CB: 5 7 6/4
CD:

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xat y min,slope

AB: 3 7 -5/2
CB: 5 7 6/4
CD: 11 13 0
DE:

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xat y min,slope

AB: 3 7 -5/2
CB: 5 7 6/4
CD: 11 13 0
DE: 11 7 6/4
EF:

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xat y min,slope

AB: 3 7 -5/2
CB: 5 7 6/4
CD: 11 13 0
DE: 11 7 6/4
EF: 9 7 -5/2
FA:

Utah School of Computing Spring 2013

Computer Graphics CS5600

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xat y min,slope

AB: 3 7 -5/2
CB: 5 7 6/4
CD: 11 13 0
DE: 11 7 6/4
EF: 9 7 -5/2
FA: 9 2 0

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xat y min,slope

AB: 3 7 -5/2
CB: 5 7 6/4
CD: 11 13 0
DE: 11 7 6/4
EF: 9 7 -5/2
FA: 9 2 0

What about Ymin?

Active Edge Table

Preprocess: Sort on Y

Edge Table

Ymax,xmin,slope

Active Edge Table

• Algorithm: scanline from bottom to top…
– Sort all edges by their minimum y coord (last slide)

– Starting at smallest Y coord with in entry in edge table

– For each scanline:
• Add edges with Ymin = Y (move edges in edge table to AET)

• Retire edges with Ymax < Y (completed edges)

• Sort edges in AET by x intersection

• Walk from left to right, setting pixels by parity rule

• Increment scanline

• Recalculate edge intersections (how?)

– Stop when Y > Ymax for edge table and AET is empty

Active Edge Table

• Algorithm: scanline from bottom to top…
– Sort all edges by their minimum y coord (last slide)

– Starting at smallest Y coord with in entry in edge table

– For each scanline:
1. Add edges with Ymin = Y (move edges in edge table to AET)

2. Retire edges with Ymax < Y (completed edges)

3. Sort edges in AET by x intersection

4. Walk from left to right, setting pixels by parity rule

5. Increment scanline

6. Recalculate edge intersections (how?)
For every non-vertical edge in the AET update x for the new y
(calculate the next intersection of the edge with the scan line).

– Stop when Y > Ymax for edge table and AET is empty

Active Edge Table Example

Example of an AET containing edges {FA, EF, DE, CD} on scan line 8:

1. : (y = 8) Get edges from ET bucket y (none in this case, y = 8 has no entry)

2. : Remove from the AET any entries where ymax = y (none here)

3. : sort by X

4. : Draw scan line. To handle multiple edges, group in pairs: {FA,EF}, {DE,CD}

5. : y = y+1 (y = 8+1 = 9)

6. : Update x for non-vertical edges, as in simple line drawing.

(FvDFH pages 92, 99)

Current X SlopeY val

Scanline 8

2 3 9 13

Utah School of Computing Spring 2013

Computer Graphics CS5600

Active Edge Table Example (cont.)

1. : (y = 9) Get edges from ET bucket y (none in this case, y = 9 has no entry in ET)
– “Scan line 9” shown in fig 3.28 below

2. : Remove from the AET any entries with ymax = y (remove FA, EF)

3. : Sort by X

4. : Draw scan line between {DE, CD}

5. : y = y+1 = 10

6. : Update x in {DE, CD}

7. : (y = 10) (Scan line 10 shown in fig 3.28 below)

8. And so on…

(FvDFH pages 92, 99)(FvDFH pages 92, 99)

Current X SlopeY val

Triangles (cont.)

• Rasterization algorithms can take advantage of
triangle properties

• Graphics hardware is optimized for triangles

• Because triangle drawing is so fast, many systems will
subdivide polygons into triangles prior to scan
conversion

Why are Barycentric coordinates
useful?

• For any point x, if the barycentric representation of
that point: x,x, x < 1

• Also ,, can be used as a mass function across
the surface of a triangle to be used for interpolation.

• This is used to interpolate normals across the surface
of a triangle to make polygon surfaces look rounder.

Barycentric Coordinates

• Consider a triangle defined by three points a, b, and c.

• Define a new coordinate system in which a is the
origin, b and c define the coordinate system basis
vectors

• Note that the coordinate system will be non-
orthogonal.

Barycentric Coordinates

a

c

bb-a

c-
a

Barycentric Coordinates

• With this new coordinate system, any point can be
written as:

• rearranging terms, we get:

• let

• then

)()(acabap  

cbap  )1(

)1( 

cbap  

Utah School of Computing Spring 2013

Computer Graphics CS5600

Barycentric Coordinates

a

c

bb-a

c-
a

=
0

=
-1 =

1 =
2

= -1

=0

= 1

= 2

Barycentric Coordinates

• Now any point in the plane can be represented using
its barycentric coordinates

• If

• then the point lies somewhere in the triangle

cbap  

10

10

10

1













Barycentric Coordinates

• If one of the coordinates is zero and the other two are between 0
and 1, the point is on an edge

• If two coordinates are zero and the other is one, the point is at a
vertex.

• The barycentric coordinate is the signed scaled distance from the
point to the line passing through the other two triangle points

a

c

b

c-
a

=
0

=
-1

=
1

d=1

Computing Barycentric Coordinates

• Implicit form between two points (a,b) and (a,c)

abbaabba yxyxyxxxyybaf )()(),(

accaacca yxyxyxxxyycaf )()(),(

Barycentric Coordinates

a

c

bb-a

c-
a

=
0

=
-1 =

1 =
2

= -1

=0

= 1

= 2

PDF Slides

Utah School of Computing Spring 2013

Computer Graphics CS5600

Computing Barycentric Coordinates

• To compute the barycentric coordinates of a point:

abbacabcba

abbaabba

yxyxyxxxyy

yxyxyxxxyy





)()(

)()(

accabacbca

accaacca

yxyxyxxxyy

yxyxyxxxyy





)()(

)()(

 1

Barycentric Coordinate Applet

http://i33www.ira.uka.de/applets/mocca/html/noplugin/inhalt.html

Rasterize This!
(Rasterization intuition)

• When we render a triangle we want to determine if a
pixel is within a triangle. (barycentric coords)

• Calculate the color of the pixel (use barycentric coors).

• Draw the pixel.
• Repeat until the triangle is appropriately filled.

Rasterization Pseudo Code

Rasterization Rasterization

Utah School of Computing Spring 2013

Computer Graphics CS5600

Rasterization

Ymax, Xmax

Ymin, X???

Y???, Xmin

Bounding Box

Ymax, Xmax

Ymin, X???

Y???, Xmin

Barycentric Coordinates

• weighted combination of vertices

321 PPPP  

1P

3P

2P

P

(1,0,0)(1,0,0)

(0,1,0)(0,1,0)

(0,0,1)(0,0,1) 5.0

1

0
1,,0

1






““convex combinationconvex combination
of pointsof points””

Barycentric Coordinates for I
nterpolation

• how to compute ?
– use bilinear interpolation or plane equations

– once computed, use to interpolate any # of
parameters from their vertex values

 ,,

interpolate interpolate  ,,

...



 dzcybxa

321 xxxx  
321 rrrr  

321 gggg  
etc.etc.

Interpolatation: Gouraud Shading

• need linear function over triangle that yields original
vertex colors at vertices

• use barycentric coordinates for this
– every pixel in interior gets colors resulting from mixing colors of

vertices with weights corresponding to barycentric coordinates

– color at pixels is affine combination of colors at vertices

)()()(

:)(

321

321

xxx

xxx

ColorColorColor

Color




Gouraud Shading Scanline Alg

• algorithm

– modify scanline algorithm for polygon scan-conversion :

• linearly interpolate colors along edges of triangle to obtain colors for
endpoints of span of pixels

• linearly interpolate colors from these endpoints within the scanline

max
minmax

max
min

minmax

max *1* C
XX

XX
C

XX

XX curcur















Xmin
XmaxXcur

Utah School of Computing Spring 2013

Computer Graphics CS5600

Filling Techniques

• Another approach to polygon fill is using a filling
technique, rather than scan conversion

• Pick a point inside the polygon, then fill neighboring
pixels until the polygon boundary is reached

• Boundary Fill Approach:
– Draw polygon boundary in the frame buffer

– Determine an interior point

– Starting at the given point, do
• If the point is not the boundary color or the fill color

Set this pixel to the fill color

Propagate to the pixel’s neighbors and continue

Filling Techniques

• Flood Fill Approach:
– Set all interior pixels to a certain color

– The boundary can be any other color

– Pick an interior point and set it to the polygon color

– Propagate to neighbors, as long as the neighbor is the interior
color

• This is used for regions with multi-colored boundaries

Region to be filled

Propagating to Neighbors

• Most frequently used approaches:
– 4-connected area

– 8-connected area

4-connected 8-connected

Fill Problems

• Fill algorithms have potential problems

• E.g., 4-connected area fill:

Starting point Fill complete

Fill Problems
• Similarly, 8-connected can “leak” over to another

polygon

• Another problem: the algorithm is highly recursive
– Can use a stack of spans to reduce amount of recursion

Starting point Fill complete

Utah School of Computing Spring 2013

Computer Graphics CS5600

Pattern Filling
• Often we want to fill a region with a pattern, not just a

color

• Define an n by m pixmap (or bitmap) that we wish to
replicate across the region

5x4 pixmap

Object to be
patterned

Final patterned
object

Pattern Filling

• How do you determine the anchor point
– A point on the polygon

• Left-most point?

• The pattern will move with the polygon

• Difficult to decide the right anchor point

– Screen (or window) origin
• Easier to determine anchor point

• The pattern does not move with the object

Pattern Filling

• How do we determine which color to color a point in
the object?

• Use the MOD function to tile the pattern across the
polygon

• For point (x, y)
– Use the pattern color located at (x MOD m, y MOD n)

Pattern Example

• For the pattern shown, what color does the pixel at
location (235, 168) get colored, assuming the pattern
is anchored at the lower left corner of the object?

Pattern

???

23
5

22
5

168

163

Pattern Example

Pattern

???

23
5

22
5

168

163The pattern is
5x4

Need to find the relative distance to the point to draw:
X = (235 – 225) = 10
Y = (168 – 163) = 5

Next figure out which pattern pixel corresponds to this screen pixel:
Xpattern = 10 MOD 4 = 2
Ypattern = 5 MOD 5 = 0

Pattern Example

• The pattern pixel (2, 0) should map to screen location
(235, 168)

(2, 0)

Let’s map the
pattern onto the
polygon and see

???

23
5

22
5

168

163

(0, 0) pattern
location

Utah School of Computing Spring 2013

Computer Graphics CS5600

The End

Scan Conversion

Le
ct

ur
e

S
et

 4

103

